Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 954146, 5 pages
http://dx.doi.org/10.1155/2013/954146
Research Article

Phosphorescent Molecularly Doped Light-Emitting Diodes with Blended Polymer Host and Wide Emission Spectra

State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China

Received 30 July 2013; Accepted 4 October 2013

Academic Editors: W. Hu and S. Jit

Copyright © 2013 Jun Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Goushi, K. Yoshida, K. Sato, and C. Adachi, “Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion,” Nature Photonics, vol. 6, no. 4, pp. 253–258, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Y. Lee, “Charge trapping effect in phosphorescent organic light-emitting diodes,” Molecular Crystals and Liquid Crystals, vol. 498, pp. 131–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Applied Physics Letters, vol. 51, p. 913, 1987. View at Publisher · View at Google Scholar
  4. J. Lee, C. Huang, C. Hsiao, M. Leung, C. Yang, and C. Chao, “Blue phosphorescent organic light-emitting device with double emitting layer,” Applied Physics Letters, vol. 94, Article ID 223301, 2009. View at Publisher · View at Google Scholar
  5. S. Reineke, F. Lindner, G. Schwartz et al., “White organic light-emitting diodes with fluorescent tube efficiency,” Nature, vol. 459, no. 7244, pp. 234–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. F. So and D. Kondakov, “Degradation mechanisms in small-molecule and polymer organic light-emitting diodes,” Advanced Materials, vol. 22, no. 34, pp. 3762–3777, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Wu, Z. Gong, A. J. C. Kuehne et al., “Hybrid GaN/organic microstructured light-emitting devices via ink-jet printing,” Optics Express, vol. 17, no. 19, pp. 16436–16443, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. H. Burroughes, D. D. C. Bradley, A. R. Brown et al., “Light-emitting diodes based on conjugated polymers,” Nature, vol. 347, pp. 539–541, 1990. View at Publisher · View at Google Scholar
  9. T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, “Ink-jet printing of doped polymers for organic light emitting devices,” Applied Physics Letters, vol. 72, no. 5, pp. 519–521, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. C. D. Müller, A. Falcou, N. Reckefuss et al., “Multi-colour organic light-emitting displays by solution processing,” Nature, vol. 421, no. 6925, pp. 829–833, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. C. Gather, A. Köhnen, A. Falcou, H. Becker, and K. Meerholz, “Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography,” Advanced Functional Materials, vol. 17, no. 2, pp. 191–200, 2007. View at Publisher · View at Google Scholar
  12. D. Kabra, L. P. Lu, M. H. Song, H. J. Snaith, and R. H. Friend, “Efficient single-layer polymer light-emitting diodes,” Advanced Materials, vol. 22, no. 29, pp. 3194–3198, 2010. View at Google Scholar · View at Scopus
  13. K. S. Yook, S. E. Jang, and J. Y. Lee, “Efficiency improvement of solution processed blue phosphorescent devices using high triplet energy electron transport layer,” Electrochemical and Solid-State Letters, vol. 13, no. 10, pp. J122–J124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L.-C. Ko, T.-Y. Liu, C.-Y. Chen et al., “Multi-layer organic light-emitting diodes processed from solution using phosphorescent dendrimers in a polymer host,” Organic Electronics, vol. 11, no. 6, pp. 1005–1009, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. H. B. Wu, G. J. Zhou, J. H. Zou et al., “Efficient polymer white-light-emitting devices for solid-state lighting,” Advanced Materials, vol. 21, no. 41, pp. 4181–4184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. L. Niu, Y. Zhang, Y. L. Wang, X. Wang, and M. He, “High-efficiency conjugated-polymer-hosted blue phosphorescent light-emitting diodes,” Chinese Science Bulletin, vol. 57, pp. 3639–3643, 2012. View at Publisher · View at Google Scholar
  17. Q. Niu, X. Wang, J. Zhou, Y. Wang, and Y. Zhang, “Effect of methanol treatment on performance of phosphorescent dye doped polymer light-emitting diodes,” Synthetic Metals, vol. 160, no. 21-22, pp. 2381–2384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Wang, X.-Q. Wei, H.-B. Rao, J.-B. Cheng, and Y.-D. Jiang, “High-efficiency and high-stability phosphorescent OLED based on new Ir complex,” Acta Physica Sinica, vol. 56, no. 2, pp. 1156–1161, 2007. View at Google Scholar · View at Scopus
  19. H. Liu, P. Wang, J. He et al., “High-efficiency endothermic energy transfer in polymeric light-emitting devices based on cyclometalated Ir complexes,” Applied Physics Letters, vol. 92, Article ID 023301, 2008. View at Publisher · View at Google Scholar
  20. L. Müller-Meskamp, Y. H. Kim, T. Roch et al., “Efficiency enhancement of organic solar cells by fabricating periodic surface textures using direct laser interference patterning,” Advanced Materials, vol. 24, no. 7, pp. 906–910, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. M. S. Soh, S. A. G. Santamaria, E. L. Williams, M. Pérez-Morales, H. J. Bolink, and A. Sellinger, “Solution processable high band gap hosts based on carbazole functionalized cyclic phosphazene cores for application in organic light-emitting diodes,” Journal of Polymer Science B, vol. 49, no. 7, pp. 531–539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Wu, Y. Liu, Y. Wang et al., “Highly efficient near-infrared emission from binuclear cyclo-metalated platinum complexes bridged with 5-(4-octyloxyphenyl)-1,3,4-oxadiazole-2-thiol in PLEDs,” Organic Electronics, vol. 13, no. 5, pp. 932–937, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Mizuno, I. Takasu, S. Uchikoga et al., “Fluorinated carbazole derivatives as wide-energy-gap host material for blue phosphorescent organic light-emitting diodes,” The Journal of Physical Chemistry C, vol. 116, no. 39, pp. 20681–20687, 2012. View at Publisher · View at Google Scholar
  24. A. Endo, K. Sato, K. Yoshimura et al., “Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes,” Applied Physics Letters, vol. 98, no. 8, Article ID 083302, 2011. View at Publisher · View at Google Scholar · View at Scopus