Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2013, Article ID 969734, 12 pages
http://dx.doi.org/10.1155/2013/969734
Research Article

An Adaptive Cauchy Differential Evolution Algorithm for Global Numerical Optimization

1Department of Computer Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon 440-746, Republic of Korea
2Robot Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 50-1 Sang-ri, Hyeonpung-meyeon, Daegu 711-873, Republic of Korea

Received 3 May 2013; Accepted 6 June 2013

Academic Editors: P. Agarwal, S. Balochian, V. Bhatnagar, J. Yan, and Y. Zhang

Copyright © 2013 Tae Jong Choi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. View at Google Scholar · View at Scopus
  2. R. Gamperle, S. D. Muller, and P. Koumoutsakos, “A parameter study for differential evolution,” in Proceedings of the International Conference on Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation (WSEAS '02), pp. 293–298, 2002.
  3. J. Zhang and A. C. Sanderson, “An approximate Gaussian model of differential evolution with spherical fitness functions,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '07), pp. 2220–2228, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. Á. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 124–141, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, Springer, Berlin, Germany, 2003.
  7. A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution algorithm for numerical optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '05), vol. 2, pp. 1785–1791, September 2005. View at Scopus
  8. J. Brest, B. Boškovć, S. Greiner, V. Žumer, and M. S. Maučec, “Performance comparison of self-adaptive and adaptive differential evolution algorithms,” Soft Computing, vol. 11, no. 7, pp. 617–629, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Ali and M. Pant, “Improving the performance of differential evolution algorithm using Cauchy mutation,” Soft Computing, vol. 15, no. 5, pp. 991–1007, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Teo, “Exploring dynamic self-adaptive populations in differential evolution,” Soft Computing, vol. 10, no. 8, pp. 673–686, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. H. A. Abbass, “The self-adaptive Pareto differential evolution algorithm,” in Proceedings of the Congress on Evolutionary Computation (CEC '02), pp. 831–836, May 2002.
  12. J. Zhang and A. C. Sanderson, “JADE: adaptive differential evolution with optional external archive,” IEEE Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Zhang and A. C. Sanderson, Adaptive Differential Evolution: A Robust Approach to Multimodal Problem Optimization, Springer, Berlin, Germany, 2009.
  14. X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–102, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Yao, Y. Liu, K. H. Liang, and G. Lin, “Fast evolutionary algorithms,” in Advances in Evolutionary Computing, pp. 45–94, Springer, New York, NY, USA, 2003. View at Google Scholar
  16. E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello, “A comparative study of differential evolution variants for global optimization,” in Proceedings of the 8th Annual Genetic and Evolutionary Computation Conference (GECCO '06), pp. 485–492, July 2006. View at Scopus
  17. J. Vesterstrøm and R. Thomsen, “A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems,” in Proceedings of the Congress on Evolutionary Computation (CEC '04), vol. 2, pp. 1980–1987, June 2004. View at Scopus
  18. E. Cuevas, D. Zaldivar, and M. Pérez-Cisneros, “A novel multi-threshold segmentation approach based on differential evolution optimization,” Expert Systems with Applications, vol. 37, no. 7, pp. 5265–5271, 2010. View at Publisher · View at Google Scholar · View at Scopus