Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 102541, 27 pages
http://dx.doi.org/10.1155/2014/102541
Research Article

Expression Profiling Using a cDNA Array and Immunohistochemistry for the Extracellular Matrix Genes FN-1, ITGA-3, ITGB-5, MMP-2, and MMP-9 in Colorectal Carcinoma Progression and Dissemination

1Postgraduate Program in Interdisciplinary Surgery Science, UNIFESP-Escola Paulista de Medicina, São Paulo, SP 04023-062, Brazil
2Research and Teaching Unit of Hospital Municipal Dr. Munir Rafful, Volta Redonda, RJ 27277-130, Brazil
3Hospital de Cancer de Barretos-Fundação Pio XII, Barretos, SP 14784-400, Brazil
4Genetics Laboratory-GRAAAC, UNIFESP-Escola Paulista de Medicina, São Paulo, SP 04023-062, Brazil

Received 20 November 2013; Accepted 13 January 2014; Published 4 March 2014

Academic Editors: D. Morris and E. Tagliabue

Copyright © 2014 Suzana Angelica Silva Lustosa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. M. Rossi, W. T. Nakagawa, F. O. Ferreira, S. A. Junior, and A. Lopes, Colon, Rectal and Anal Cancer, Lemar e Tecmedd, São Paulo, Brazil, 2004.
  2. Y.-X. Chen, Y. Wang, C.-C. Fu et al., “Dexamethasone enhances cell resistance to chemotherapy by increasing adhesion to extracellular matrix in human ovarian cancer cells,” Endocrine-Related Cancer, vol. 17, no. 1, pp. 39–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Murphy, P. Koklitis, and A. F. Carne, “Dissociation of tissue inhibitor of metalloproteinases (TIMP) from enzyme complexes yields fully active inhibitor,” Biochemical Journal, vol. 261, no. 3, pp. 1031–1034, 1989. View at Google Scholar · View at Scopus
  4. G. Ghilardi, M. L. Biondi, J. Mangoni et al., “Matrix metalloproteinase-1 promoter polymorphism 1 g/2 g is correlated with colorectal cancer invasiveness,” Clinical Cancer Research, vol. 7, no. 8, pp. 2344–2346, 2001. View at Google Scholar · View at Scopus
  5. B. von Lampe, A. Stallmach, and E. O. Riecken, “Altered glycosylation of integrin adhesion molecules in colorectal cancer cells and decreased adhesion to the extracellular matrix,” Gut, vol. 34, no. 6, pp. 829–836, 1993. View at Google Scholar · View at Scopus
  6. M. Streit, R. Schmidt, R. U. Hilgenfeld, E. Thiel, and E.-D. Kreuser, “Adhesion receptors in malignant transformation and dissemination of gastrointestinal tumors,” Journal of Molecular Medicine, vol. 74, no. 5, pp. 253–268, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Jinka, R. Kapoor, P. G. Sistla, T. A. Raj, and G. Pande, “Alterations in cell-extracellular matrix interactions during progression of cancers,” International Journal of Cell Biology, vol. 2012, Article ID 219196, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. M. F. P. van der Jagt, T. Wobbes, L. J. A. Strobbe, F. C. G. J. Sweep, and P. N. Span, “Metalloproteinases and their regulators in colorectal cancer,” Journal of Surgical Oncology, vol. 101, no. 3, pp. 259–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Surlin, M. Ioana, and I. E. Pleşea, “Genetic patterns of metalloproteinases and their tissue inhibitors—clinicopathologic and prognostic significance in colorectal cancer,” Romanian Journal of Morphology and Embryology, vol. 52, no. 1, supplement, pp. 231–236, 2011. View at Google Scholar
  10. V. P. Navarro, P. Nelson-Filho, L. A. B. Silva, and A. C. Freitas, “Matrix metalloproteinases participation in physiological and pathologic oral processes,” Revista de Odontologia da UNESP, vol. 35, no. 4, pp. 233–238, 2006. View at Google Scholar
  11. M. Jucá, B. L. B. B. P. Nunes, H. L. Menezes, E. G. A. Gomes, and D. Matos, “Metalloproteinases 1 and 7 and colorectal cancer,” Revista Brasileira de Coloproctologia, vol. 28, no. 3, pp. 353–362, 2008. View at Publisher · View at Google Scholar
  12. L. S. Viana, R. J. Afonso Jr., S. R. Morini et al., “Relationship between the expression of the extracellular matrix genes sparc, sppp1, fn1, itga5 and itgav and clinicopathological parameters of tumor progression and colorectal cancer dissemination,” Oncology, vol. 84, pp. 81–91, 2013. View at Google Scholar
  13. M. V. A. Denadai, L. S. Viana, R. J. Afonso Jr. et al., “Expression of integrin genes and proteins in progression and dissemination of colorectal adenocarcinoma,” BMC Clinical Pathology, vol. 13, article 16, 2013. View at Publisher · View at Google Scholar
  14. P. C. Nowell, “Tumor progression: a brief historical perspective,” Seminars in Cancer Biology, vol. 12, no. 4, pp. 261–266, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Arnaout, S. L. Goodman, and J.-P. Xiong, “Structure and mechanics of integrin-based cell adhesion,” Current Opinion in Cell Biology, vol. 19, no. 5, pp. 495–507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. J. Avraamides, B. Garmy-Susini, and J. A. Varner, “Integrins in angiogenesis and lymphangiogenesis,” Nature Reviews Cancer, vol. 8, no. 8, pp. 604–617, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Pinon and B. Wehrle-Haller, “Integrins: versatile receptors controlling melanocyte adhesion, migration and proliferation,” Pigment Cell and Melanoma Research, vol. 24, no. 2, pp. 282–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. M. S. Nicoloso, R. Spizzo, M. Shimizu, S. Rossi, and G. A. Calin, “MicroRNAs—the micro steering wheel of tumour metastases,” Nature Reviews Cancer, vol. 9, no. 4, pp. 293–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. K. McElroy, S. Kaushal, H. S. T. Cao et al., “Upregulation of thrombospondin-1 and angiogenesis in an aggressive human pancreatic cancer cell line selected for high metastasis,” Molecular Cancer Therapeutics, vol. 8, no. 7, pp. 1779–1786, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Raeder, T. P. Utheim, Ø. A. Utheim et al., “Effects of organ culture and optisol-GS storage on structural integrity, phenotypes, and apoptosis in cultured corneal epithelium,” Investigative Ophthalmology and Visual Science, vol. 48, no. 12, pp. 5484–5493, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. F. Bertucci, S. Salas, S. Eysteries et al., “Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters,” Oncogene, vol. 23, no. 7, pp. 1377–1391, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Hoos and C. Cordon-Cardo, “Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations,” Laboratory Investigation, vol. 81, no. 10, pp. 1331–1338, 2001. View at Google Scholar · View at Scopus
  23. C. Spearman, “The proof and measurement of association between two things,” International Journal of Epidemiology, vol. 39, no. 5, pp. 1137–1150, 2010. View at Publisher · View at Google Scholar
  24. A. Stallmach, B. von Lampe, H. Matthes, G. Bornhoft, and E. O. Riecken, “Diminished expression of integrin adhesion molecules on human colonic epithelial cells during the benign to malign tumour transformation,” Gut, vol. 33, no. 3, pp. 342–346, 1992. View at Google Scholar · View at Scopus
  25. S. M. Pupa, S. Ménard, S. Forti, and E. Tagliabue, “New insights into the role of extracellular matrix during tumor onset and progression,” Journal of Cellular Physiology, vol. 192, no. 3, pp. 259–267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. T. K. Borg, “It's the matrix! ECM, proteases, and cancer,” The American Journal of Pathology, vol. 164, no. 4, pp. 1141–1142, 2004. View at Google Scholar · View at Scopus
  27. T. Ueda, S. Volinia, H. Okumura et al., “Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis,” The Lancet Oncology, vol. 11, no. 2, pp. 136–146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Chen, X.-C. Ye, K. Chu et al., “A secreted isoform of ErbB3 promotes osteonectin expression in bone and enhances the invasiveness of prostate cancer cells,” Cancer Research, vol. 67, no. 14, pp. 6544–6548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Kononen, L. Bubendorf, A. Kallioniemi et al., “Tissue microarrays for high-throughput molecular profiling of tumor specimens,” Nature Medicine, vol. 4, no. 7, pp. 844–847, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. V. P. Andrade, I. W. Cunha, E. M. Silva et al., “Tissue microarrays: high throughput and low cost avaiable for pathologists,” Jornal Brasileiro de Patologia e Medicina Laboratorial, vol. 43, no. 1, pp. 55–60, 2007. View at Publisher · View at Google Scholar
  31. J. Haler, M. Nasralla, and G. L. Nicolson, “Different adhesion properties of highly and poorly metastatic HT-29 colon carcinoma cells with extracellular matrix components: role of integrin expression and cytoskeletal components,” British Journal of Cancer, vol. 80, no. 12, pp. 1867–1874, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Bianchi, M. E. Gervasi, and A. V. Bakin, “Role of β5-integrin in epithelial-mesenchymal transition in response to TGFβ,” Cell Cycle, vol. 9, no. 8, pp. 1647–1659, 2010. View at Google Scholar · View at Scopus
  33. A. Kren, V. Baeriswyl, F. Lehembre et al., “Increased tumor cell dissemination and cellular senescence in the absence of β1-integrin function,” The EMBO Journal, vol. 26, no. 12, pp. 2832–2842, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. J. S. Desgrosellier and D. A. Cheresh, “Integrins in cancer: biological implications and therapeutic opportunities,” Nature Reviews Cancer, vol. 10, no. 1, pp. 9–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Pesta, O. Topolcan, L. Holubec Jr. et al., “Clinicopathological assessment and quantitative estimation of the matrix metalloproteinases MMP-2 and MMP-7 and the inhibitors TIMP-1 and TIMP-2 in colorectal carcinoma tissue samples,” Anticancer Research, vol. 27, no. 4, pp. 1863–1867, 2007. View at Google Scholar · View at Scopus
  36. T. Oshima, C. Kunisaki, K. Yoshihara et al., “Clinicopathological significance of the gene expression of matrix metalloproteinases and reversion-inducing cysteine-rich protein with Kazal motifs in patients with colorectal cancer: MMP-2 gene expression is a useful predictor of liver metastasis from colorectal cancer,” Oncology Reports, vol. 19, no. 5, pp. 1285–1291, 2008. View at Google Scholar · View at Scopus
  37. Z. Cavdar, A. E. Canda, C. Terzi, S. Sarioglu, M. Fuzun, and G. Oktay, “Role of gelatinases (matrix metalloproteinases 2 and 9), vascular endothelial growth factor and endostatin on clinicopathological behaviour of rectal cancer,” Colorectal Disease, vol. 13, no. 2, pp. 154–160, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. V. V. Delektorskaya and N. E. Kushlinskii, “Clinical significance of the content of biomolecular markers in invasive front of colon carcinomas,” Bulletin of Experimental Biology and Medicine, vol. 150, no. 3, pp. 368–371, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. M. J. Murnane, J. Cai, S. Shuja, D. McAneny, V. Klepeis, and J. B. Willett, “Active MMP-2 effectively identifies the presence of colorectal cancer,” International Journal of Cancer, vol. 125, no. 12, pp. 2893–2902, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Bendardaf, A. Buhmeida, M. Hilska et al., “MMP-9 (gelatinase B) expression is associated with disease-free survival and disease-specific survival in colorectal cancer patients,” Cancer Investigation, vol. 28, no. 1, pp. 38–43, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Unsal, N. Akyurek, A. Uner et al., “Gelatinase B expression as a prognostic factor in patients with stage II/III rectal carcinoma treated by postoperative adjuvant therapy,” American Journal of Clinical Oncology, vol. 31, no. 1, pp. 55–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Zucker and J. Vacirca, “Role of matrix metalloproteinases (MMPs) in colorectal cancer,” Cancer and Metastasis Reviews, vol. 23, no. 1-2, pp. 101–117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Chu, Z. Zhao, Y. Zhou et al., “Matrix metalloproteinase-9 is associated with relapse and prognosis of patients with colorectal cancer,” Annals of Surgical Oncology, vol. 19, no. 1, pp. 318–325, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Herszényi, F. Sipos, O. Galamb et al., “Matrix metalloproteinase-9 expression in the normal mucosa-adenoma-dysplasia-adenocarcinoma sequence of the colon,” Pathology and Oncology Research, vol. 14, no. 1, pp. 31–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Buhmeida, R. Bendardaf, M. Hilska et al., “Prognostic significance of matrix metalloproteinase-9 (MMP-9) in stage II colorectal carcinoma,” Journal of Gastrointestinal Cancer, vol. 40, no. 3-4, pp. 91–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. T. S. Loy and P. A. Kaplan, “Villous adenocarcinoma of the colon and rectum: a clinicopothologic study of 36 cases,” The American Journal of Surgical Pathology, vol. 28, no. 11, pp. 1460–1465, 2004. View at Publisher · View at Google Scholar · View at Scopus