Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 123019, 17 pages
http://dx.doi.org/10.1155/2014/123019
Research Article

A Synchronous-Asynchronous Particle Swarm Optimisation Algorithm

1Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Multimedia University, Jalan Ayer Keroh Lama, 75450 Bukit Beruang, Melaka, Malaysia
3Faculty of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia

Received 23 April 2014; Accepted 20 June 2014; Published 10 July 2014

Academic Editor: T. O. Ting

Copyright © 2014 Nor Azlina Ab Aziz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks (ICNN ’95), vol. 4, pp. 1942–1948, Perth, Western Australia, November-December 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. R. C. Eberhart and X. Hu, “Human tremor analysis using particle swarm optimization,” Proceedings of the Congress on Evolutionary Computation (CEC '99), pp. 1927–1930, 1999, Cat. no. 99TH8406. View at Google Scholar
  3. Z. Ibrahim, N. K. Khalid, J. A. A. Mukred et al., “A DNA sequence design for DNA computation based on binary vector evaluated particle swarm optimization,” International Journal of Unconventional Computing, vol. 8, no. 2, pp. 119–137, 2012. View at Google Scholar · View at Scopus
  4. J. Hazra and A. K. Sinha, “Congestion management using multiobjective particle swarm optimization,” IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 1726–1734, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. F. Tasgetiren, Y. Liang, M. Sevkli, and G. Gencyilmaz, “Particle swarm optimization algorithm for single machine total weighted tardiness problem,” in Proceedings of the Congress on Evolutionary Computation (CEC '04), pp. 1412–1419, June 2004. View at Scopus
  6. A. Adam, A. F. Zainal Abidin, Z. Ibrahim, A. R. Husain, Z. Md Yusof, and I. Ibrahim, “A particle swarm optimization approach to Robotic Drill route optimization,” in Proceedings of the 4th International Conference on Mathematical Modelling and Computer Simulation (AMS '10), pp. 60–64, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. N. Ayob, Z. M. Yusof, A. Adam et al., “A particle swarm optimization approach for routing in VLSI,” in Proceedings of the 2nd International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN '10), pp. 49–53, Liverpool, UK, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proceedings of the IEEE International Conference on Evolutionary Computation and IEEE World Congress on Computational Intelligence, (Cat. No.98TH8360), pp. 69–73, Anchorage, Alaska, USA, May 1998. View at Publisher · View at Google Scholar
  9. M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Reyes-Sierra and C. A. Coello Coello, “Multi-objective particle swarm optimizers: a survey of the state-of-the-art,” International Journal of Computational Intelligence Research, vol. 2, no. 3, pp. 287–308, 2006. View at Google Scholar · View at MathSciNet
  11. K. S. Lim, Z. Ibrahim, S. Buyamin et al., “Improving vector evaluated particle swarm optimisation by incorporating nondominated solutions,” The Scientific World Journal, vol. 2013, Article ID 510763, 19 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Kennedy and R. C. Eberhart, “Discrete binary version of the particle swarm algorithm,” in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, vol. 5, pp. 4104–4108, Orlando, Fla, USA, October 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. Mohamad, S. Omatu, S. Deris, M. Yoshioka, A. Abdullah, and Z. Ibrahim, “An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes,” Algorithms for Molecular Biology, vol. 8, article 15, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Rada-Vilela, M. Zhang, and W. Seah, “A performance study on the effects of noise and evaporation in particle swarm optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '12), pp. 1–8, June 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Carlisle and G. Dozier, “An Off-The-Shelf PSO,” in Proceedings of the Workshop on Particle Swarm Optimization, 2001.
  16. L. Mussi, S. Cagnoni, and F. Daolio, “Empirical assessment of the effects of update synchronization in particle swarm optimization,” in Proceeding of the AIIA Workshop on Complexity, Evolution and Emergent Intelligence, pp. 1–10, 2009.
  17. J. Rada-Vilela, M. Zhang, and W. Seah, “A performance study on synchronicity and neighborhood size in particle swarm optimization,” Soft Computing, vol. 17, no. 6, pp. 1019–1030, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Jiang, N. Wang, and X. He, “Asynchronous particle swarm optimizer with relearning strategy,” in Proceedings of the 37th Annual Conference of the IEEE Industrial Electronics Society (IECON '11), pp. 2341–2346, November 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Xue, J. Zhang, and J. Zeng, “Parallel asynchronous control strategy for target search with swarm robots,” International Journal of Bio-Inspired Computation, vol. 1, no. 3, pp. 151–163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Juan, M. Zhang, and W. Seah, “A performance study on synchronous and asynchronous updates in Particle Swarm Optimization,” in Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO '11), pp. 21–28, July 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Shi and R. Eberhart, “Parameter selection in particle swarm optimization,” in Evolutionary Programming VII, vol. 1447 of Lecture Notes in Computer Science, pp. 591–600, Springer, New York, NY, USA, 1998. View at Publisher · View at Google Scholar
  22. Y. Kennedy, J. Eberhart, and R. Shi, Swarm Intelligence, Morgan Kaufmann, Boston, Mass, USA, 2001.
  23. Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in Proceedings of the Congress on Evolutionary Computation (CEC '99), pp. 1945–1950, 1999, Cat. no. 99TH8406.
  24. J. Kennedy, “Why does it need velocity?” in Proceedings of the IEEE Swarm Intelligence Symposium (SIS '95), pp. 38–44, 2005.
  25. R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm optimization,” in Proceedings of the Congress on Evolutionary Computation (CEC '00), vol. 1 of (Cat. No.00TH8512), pp. 84–88, July 2000. View at Scopus
  26. J. Rada-Vilela, M. Zhang, and W. Seah, “Random asynchronous PSO,” in Proceedings of the 5th International Conference on Automation, Robotics and Applications (ICARA '11), pp. 220–225, Wellington, New Zealand, December 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Dioşan and M. Oltean, “Evolving the structure of the particle swarm optimization algorithms,” in Proceedings of the 6th European Conference on Evolutionary Computation in Combinatorial Optimization (EvoCOP '06), vol. 3906 of Lecture Notes in Computer Science, pp. 25–36, Springer, 2006. View at Publisher · View at Google Scholar
  28. S. Das and P. N. Suganthan, Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems, 2011.
  29. T. Hatanaka, T. Korenaga, and N. Kondo, Search Performance Improvement for PSO in High Dimensional Space, 2007.
  30. T. Hendtlass, “Particle swarm optimisation and high dimensional problem spaces,” in Proceedings of the Eleventh conference on Congress on Evolutionary Computation (CEC '09), pp. 1988–1994, IEEE Press, Piscataway, NJ, USA, May 2009. View at Scopus
  31. J. Derrac, S. García, D. Molina, and F. Herrera, “A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,” Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Dieterich and B. Hartke, “Empirical review of standard benchmark functions using evolutionary global optimization,” In press, http://arxiv.org/abs/1207.4318.