Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 184604, 7 pages
http://dx.doi.org/10.1155/2014/184604
Research Article

Synthesis and Ultraviolet Visible Spectroscopy Studies of Chitosan Capped Gold Nanoparticles and Their Reactions with Analytes

Nanomaterials Engineering Research Group, Advanced Materials Research Laboratory, Department of Mechanical Engineering, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur, Malaysia

Received 29 April 2014; Revised 10 July 2014; Accepted 16 July 2014; Published 19 August 2014

Academic Editor: Degang Fu

Copyright © 2014 Norfazila Mohd Sultan and Mohd Rafie Johan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Handley, Colloidal Gold: Principles, Methods, and Applications, Academic Press, New York, NY, USA, 1989, edited by M. A. Hayat.
  2. C. Roos, M. Schmidt, J. Ebenhoch, F. Baumann, B. Deubzer, and J. Weis, “Design and synthesis of molecular reactors for the preparation of topologically trapped gold clusters,” Advanced Materials, vol. 11, no. 9, pp. 761–766, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. R. G. Freeman, M. B. Hommer, K. C. Grabar, M. A. Jackson, and M. J. Natan, “Ag-clad Au nanoparticles: novel aggregation, optical, and surface-enhanced Raman scattering properties,” Journal of Physical Chemistry, vol. 100, no. 2, pp. 718–724, 1998. View at Google Scholar · View at Scopus
  4. L. Cao, P. Diao, L. Tong, T. Zhu, and Z. Liu, “Surface-enhanced Raman scattering of p-aminothiophenol on a Au(core)/Cu(shell) nanoparticle assembly,” ChemPhysChem, vol. 6, no. 5, pp. 913–918, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Toshima and T. Yonezawa, “Bimetallic nanoparticles: novel materials for chemical and physical applications,” New Journal of Chemistry, vol. 22, no. 11, pp. 1179–1201, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discussions of the Faraday Society, vol. 11, pp. 55–75, 1951. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature Physical Science, vol. 241, pp. 20–22, 1973. View at Publisher · View at Google Scholar
  8. M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews, vol. 104, no. 1, pp. 293–346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Sugunan, C. Thanachayanont, J. Dutta, and J. G. Hilborn, “Heavy-metal ion sensors using chitosan-capped gold nanoparticles,” Science and Technology of Advanced Materials, vol. 6, no. 3-4, pp. 335–340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Mandal, P. R. Selvakannan, S. Phadtare, R. Pasricha, and M. Sastry, “Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid,” Journal of Chemical Sciences, vol. 114, no. 5, pp. 513–520, 2002. View at Google Scholar · View at Scopus
  11. A. Sugunan and J. Dutta, “Novel synthesis of gold nanoparticles in aqueous media,” in Proceedings of the Material Research Society Fall Conference, MRS, Boston, Mass, USA, 1999.
  12. H. C. Warad, S. C. Ghosh, C. Thanachayanont, and J. Dutta, “Highly luminescent manganese doped ZnS quantum dots for biological labeling,” in Proceedings of International Conference on Smart Materials, Smart/Intelligent Materials and Nanotechnology (SmartMat '04), pp. 203–207, Chiang Mai, Thailand, 2004.
  13. N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Analytical Chemistry, vol. 76, no. 18, pp. 5370–5378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Pavlov, Y. Xiao, B. Shlyahovsky, and I. Willner, “Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin,” Journal of the American Chemical Society, vol. 126, no. 38, pp. 11768–11769, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Huang, Y. Huang, Z. Cao, W. Tan, and H. Chang, “Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors,” Analytical Chemistry, vol. 77, no. 17, pp. 5735–5741, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D. C. Hone, A. H. Haines, and D. A. Russell, “Rapid, quantitative colorimetric detection of a lectin using mannose-stabilized gold nanoparticles,” Langmuir, vol. 19, no. 17, pp. 7141–7144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, and N. Ogawa, “Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy,” Analytical and Bioanalytical Chemistry, vol. 386, no. 3, pp. 639–644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Frederix, J. Friedt, K. Choi et al., “Biosensing based on light absorption of nanoscaled gold and silver particles,” Analytical Chemistry, vol. 75, no. 24, pp. 6894–6900, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. F. L. Mi, S. S. Shyu, C. Y. Kuan, S. T. Lee, K. T. Lu, and S. F. Ajng, “Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. I. Effect of phosphorus polyelectrolyte complex and enzymatic hydrolysis of polymer,” Journal of Applied Polymer Science, vol. 74, pp. 1868–1879, 1999. View at Google Scholar
  20. K. H. Tan, R. Ahmad, B. F. Leo, M. C. Yew, B. C. Ang, and M. R. Johan, “Physico-chemical studies of amorphous carbon nanotubes synthesized at low temperature,” Materials Research Bulletin, vol. 47, no. 8, pp. 1849–1854, 2012. View at Publisher · View at Google Scholar · View at Scopus