Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 219035, 12 pages
http://dx.doi.org/10.1155/2014/219035
Research Article

Physicochemical Characterization and Thermodynamic Studies of Nanoemulsion-Based Transdermal Delivery System for Fullerene

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3Laboratory of Fundamentals of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Selangor, Malaysia
4Brain and Neuroscience Communities of Research, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

Received 24 March 2014; Accepted 25 June 2014; Published 3 August 2014

Academic Editor: Roberto Rivelino

Copyright © 2014 Cheng Loong Ngan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia-Celma, “Nano-emulsions,” Current Opinion in Colloid and Interface Science, vol. 10, no. 3-4, pp. 102–110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. G. G. Gibson and P. Skett, Introduction to Drug Metabolism, Nelson Thornes, Cheltenham, UK, 2001.
  3. F. Volkering, A. M. Breure, J. G. van Andel, and W. H. Rulkens, “Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons,” Applied and Environmental Microbiology, vol. 61, no. 5, pp. 1699–1705, 1995. View at Google Scholar · View at Scopus
  4. E. Jurado, V. Bravo, J. M. Vicaria, A. Fernandez-Arteaga, and A. I. Garcia-Lopez, “Triolein solubilization using highly biodegradable non-ionic surfactants,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 326, no. 3, pp. 162–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Acharya, S. P. Moulik, S. K. Sanyal, B. K. Mishra, and P. M. Puri, “Physicochemical investigations of microemulsification of coconut oil and water using polyoxyethylene 2-cetyl ether (Brij 52) and isopropanol or ethanol,” Journal of Colloid and Interface Science, vol. 245, no. 1, pp. 163–170, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. R. K. Mitra and B. K. Paul, “Physicochemical investigations of microemulsification of eucalyptus oil and water using mixed surfactants (AOT+Brij-35) and butanol,” Journal of Colloid and Interface Science, vol. 283, no. 2, pp. 565–577, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature, vol. 318, no. 6042, pp. 162–163, 1985. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, “Solid C60: a new form of carbon,” Nature, vol. 347, no. 6291, pp. 354–358, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. P. J. Krusic, E. Wasserman, P. N. Keizer, J. R. Morton, and K. F. Preston, “Radical reactions of C60,” Science, vol. 254, no. 5035, pp. 1183–1185, 1991. View at Publisher · View at Google Scholar · View at Scopus
  10. C. N. McEwen, R. G. McKay, and B. S. Larsen, “C60 as a radical sponge,” Journal of the American Chemical Society, vol. 114, pp. 4412–4414, 1992. View at Publisher · View at Google Scholar
  11. C. Wang, L. A. Tai, D. D. Lee et al., “C60 and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation,” Journal of Medicinal Chemistry, vol. 42, no. 22, pp. 4614–4620, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. S. H. Friedman, D. L. DeCamp, R. P. Sijbesma, G. Srdanov, F. Wudl, and G. L. Kenyon, “Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification,” Journal of the American Chemical Society, vol. 115, no. 15, pp. 6506–6509, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. L. L. Dugan, E. G. Lovett, K. L. Quick, J. Lotharius, T. T. Lin, and K. L. O'Malley, “Fullerene-based antioxidants and neurodegenerative disorders,” Parkinsonism & Related Disorders, vol. 7, no. 3, pp. 243–246, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. J. J. Ryan, H. R. Bateman, A. Stover et al., “Fullerene nanomaterials inhibit the allergic response,” Journal of Immunology, vol. 179, no. 1, pp. 665–672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Takada, H. Mimura, L. Xiao et al., “Innovative anti-oxidant: fullerene (INCI #: 7587) is as “radical sponge” on the skin. Its high level of safety, stability and potential as premier anti-aging and whitening cosmetic ingredient,” Fullerenes Nanotubes and Carbon Nanostructures, vol. 14, no. 2-3, pp. 335–341, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Kato, H. Taira, H. Aoshima, Y. Saitoh, and N. Miwa, “Clinical evaluation of fullerene-C60 dissolved in squalane for anti-wrinkle cosmetics,” Journal of Nanoscience and Nanotechnology, vol. 10, no. 10, pp. 6769–6774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Inui, H. Aoshima, A. Nishiyama, and S. Itami, “Improvement of acne vulgaris by topical fullerene application: unique impact on skin care,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 7, no. 2, pp. 238–241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Gharbi, M. Pressac, M. Hadchouel, H. Szwarc, S. R. Wilson, and F. Moussa, “Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity,” Nano Letters, vol. 5, no. 12, pp. 2578–2585, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Mori, H. Takada, S. Ito, K. Matsubayashi, N. Miwa, and T. Sawaguchi, “Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis,” Toxicology, vol. 225, no. 1, pp. 48–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Aoshima, Y. Saitoh, S. Ito, S. Yamana, and N. Miwa, “Safety evaluation of highly purified fullerenes (HPFs): based on screening of eye and skin damage,” Journal of Toxicological Sciences, vol. 34, no. 5, pp. 555–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Kato, H. Aoshima, Y. Saitoh, and N. Miwa, “Biological safety of lipoFullerene composed of squalane and fullerene-C60 upon mutagenesis, photocytotoxicity, and permeability into the human skin tissue,” Basic and Clinical Pharmacology and Toxicology, vol. 104, no. 6, pp. 483–487, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. S. Ali, J. I. Hardt, K. L. Quick et al., “A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties,” Free Radical Biology & Medicine, vol. 37, no. 8, pp. 1191–1202, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Bosi, T. da Ros, G. Spalluto, and M. Prato, “Fullerene derivatives: an attractive tool for biological applications,” European Journal of Medicinal Chemistry, vol. 38, pp. 913–923, 2003. View at Google Scholar
  24. A. C. Mendes, E. T. Baran, R. C. Pereira, H. S. Azevedo, and R. L. Reis, “Encapsulation and survival of a chondrocyte cell line within xanthan gum derivative,” Macromolecular Bioscience, vol. 12, no. 3, pp. 350–359, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. P. S. Keng, M. Basri, M. R. S. Zakaria et al., “Newly synthesized palm esters for cosmetics industry,” Industrial Crops and Products, vol. 29, no. 1, pp. 37–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Verdinelli, P. V. Messina, P. C. Schulz, and B. Vuano, “Hydrophile-lipophile balance (HLB) of n-alkane phosphonic acids and theirs salts,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 316, no. 1–3, pp. 131–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Dykes, “Surfactants and the skin,” International Journal of Cosmetic Science, vol. 20, no. 1, pp. 53–61, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Borse, V. Sharma, V. K. Aswal, P. S. Goyal, and S. Devi, “Aggregation properties of mixed surfactant systems of dimeric butane-1,4-bis(dodecylhydroxyethylmethylammonium bromide) and its monomeric counterpart,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 287, no. 1&3, pp. 163–169, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. C. B. Fox, “Squalene emulsions for parenteral vaccine and drug delivery,” Molecules, vol. 14, no. 9, pp. 3286–3312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Hou and K. D. Papadopoulos, “W1/O/W2 and O1/W/O2 globules stabilized with Span 80 and Tween 80,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 125, no. 2-3, pp. 181–187, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Porras, C. Solans, C. González, A. Martínez, A. Guinart, and J. M. Gutiérrez, “Studies of formation of W/O nano-emulsions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 249, no. 1–3, pp. 115–118, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Bouchemal, S. Briançon, E. Perrier, and H. Fessi, “Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation,” International Journal of Pharmaceutics, vol. 280, no. 1-2, pp. 241–251, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Zhao and L. Zhu, “Solubilization of DNAPLs by mixed surfactant: synergism and solubilization capacity,” Journal of Hazardous Materials, vol. 136, no. 3, pp. 513–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Wu, C. Ramachandran, N. D. Weiner, and B. J. Roessler, “Topical transport of hydrophilic compounds using water-in-oil nanoemulsions,” International Journal of Pharmaceutics, vol. 220, no. 1-2, pp. 63–75, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Sonneville-Auburn, J. T. Simonnet, and F. L'Alloret, “Nano-emulsions: a new vehicle for skin care products,” Advanced Colloid and Interface Science, vol. 108-109, pp. 145–149, 2004. View at Google Scholar
  36. A. S. Dukhin and D. Fairhurst, Science and Applications of Skin Delivery Systems, Wissenschaftliche Verlagsgesellschaft, Stuttgart, Germany, 2008.
  37. S. Aben, C. Holtze, T. Tadros, and P. Schurtenberger, “Rheological investigations on the creaming of depletion-flocculated emulsions,” Langmuir, vol. 28, no. 21, pp. 7967–7975, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. V. Kumar, L. Wang, M. Riebe, H. Tung, and R. K. Prud'homme, “Formulation and stability of itraconazole and odanacatib nanoparticles: governing physical parameters,” Molecular Pharmaceutics, vol. 6, no. 4, pp. 1118–1124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Katzbauer, “Properties and applications of xanthan gum,” Polymer Degradation and Stability, vol. 59, no. 1–3, pp. 81–84, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Comba and R. Sethi, “Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum,” Water Research, vol. 43, no. 15, pp. 3717–3726, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Mahmood and N. Akhtar, “Stability of a cosmetic multiple emulsion loaded with green tea extract,” The Scientific World Journal, vol. 2013, Article ID 153695, 7 pages, 2013. View at Publisher · View at Google Scholar
  42. M. Nedjhioui, N. Moulai-Mostefa, A. Morsli, and A. Bensmaili, “Combined effects of polymer/surfactant/oil/alkali on physical chemical properties,” Desalination, vol. 185, no. 1–3, pp. 543–550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. Z. Xuewu, L. Xin, G. Dexiang, Z. Wei, X. Tong, and M. Yonghong, “Rheological models for xanthan gum,” Journal of Food Engineering, vol. 27, no. 2, pp. 203–209, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Tadros, “Application of rheology for assessment and prediction of the long-term physical stability of emulsions,” Advances in Colloid and Interface Science, vol. 108-109, pp. 227–258, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. K. W. Song, Y. S. Kim, and G. S. Chang, “Rheology of concentrated xanthan gum solutions: Steady shear flow behavior,” Fibers and Polymers, vol. 7, no. 2, pp. 129–138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Rajinder, “Yield stress and viscoelastic properties of high internal phase ratio emulsions,” Colloid and Polymer Science, vol. 277, no. 6, pp. 583–588, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Pongsawatmanit and S. Srijunthongsiri, “Influence of xanthan gum on rheological properties and freeze-thaw stability of tapioca starch,” Journal of Food Engineering, vol. 88, no. 1, pp. 137–143, 2008. View at Publisher · View at Google Scholar · View at Scopus