Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 310283, 10 pages
http://dx.doi.org/10.1155/2014/310283
Research Article

Alternative Paradigm of Selective Vagus Nerve Stimulation Tested on an Isolated Porcine Vagus Nerve

ITIS d.o.o. Ljubljana, Center for Implantable Technology and Sensors, Lepi Pot 11, 1000 Ljubljana, Slovenia

Received 26 August 2013; Accepted 2 October 2013; Published 6 February 2014

Academic Editors: D. J. Moore and A. K. Moschovakis

Copyright © 2014 Polona Pečlin and Janez Rozman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Carlsten, B. Folkow, and C. A. Hamberger, “Cardiovascular effects of direct vagal stimulation in man,” Acta physiologica Scandinavica, vol. 41, no. 1, pp. 68–76, 1957. View at Google Scholar · View at Scopus
  2. A. M. Bilgutay, I. M. Bilgutay, F. K. Merkel, and C. W. Lillehei, “Vagal tuning. A new concept in the treatment of supraventricular arrhythmias, angina pectoris, and heart failure,” Journal of Thoracic and Cardiovascular Surgery, vol. 56, no. 1, pp. 71–82, 1968. View at Google Scholar · View at Scopus
  3. N. P. Xenopoulos and R. J. Applegate, “The effect of vagal stimulation on left ventricular systolic and diastolic performance,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 266, no. 6, part 2, pp. H2167–H2173, 1994. View at Google Scholar · View at Scopus
  4. H.-R. Berthoud and W. L. Neuhuber, “Functional and chemical anatomy of the afferent vagal system,” Autonomic Neuroscience, vol. 85, no. 1–3, pp. 1–17, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. N. Levy and P. Martin, “Parasympathetic control of the heart,” in Nervous Control of Cardiovascular Function, W. C. Randall, Ed., pp. 68–94, Oxford University Press, New York, NY, USA, 1984. View at Google Scholar
  6. R. E. Klabunde, Cardiovascular Physiology Concepts, Wolters Kluwer Health, Lippincott Williams & Wilkins, Philadelphia, PA, USA, 2012.
  7. P. Parker, B. G. Celler, E. K. Potter, and D. I. McCloskey, “Vagal stimulation and cardiac slowing,” Journal of the Autonomic Nervous System, vol. 11, no. 2, pp. 226–231, 1984. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Armour, “Peripheral autonomic neuronal interactions in cardiac regulation,” in Neurocardiology, J. A. Armour and J. L. Ardell, Eds., pp. 219–249, Oxford University Press, New York, NY, USA, 1994. View at Google Scholar
  9. A. V. Zamotrinsky, B. Kondratiev, and J. W. de Jong, “Vagal neurostimulation in patients with coronary artery disease,” Autonomic Neuroscience, vol. 88, no. 1-2, pp. 109–116, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Zhang, H. Yamada, S. Bibevski et al., “Chronic atrioventricular nodal vagal stimulation: first evidence for long-term ventricular rate control in canine atrial fibrillation model,” Circulation, vol. 112, no. 19, pp. 2904–2911, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. T. A. Anholt, S. Ayal, and J. A. Goldberg, “Recruitment and blocking properties of the CardioFit stimulation lead,” Journal of Neural Engineering, vol. 8, no. 3, Article ID 034004, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Pavlov, G. Spassov, T. Mazgalev, and S. Mileva, “Effects of vagal stimuli of different duration on heart rate and atrioventricular conduction,” Acta Physiologica et Pharmacologica Bulgarica, vol. 2, no. 4, pp. 21–26, 1976. View at Google Scholar · View at Scopus
  13. C. Frick, D. Verstappen, and T. E. Schlaepfer, “Time course of effects of vagus nerve stimulation on Hamilton depression rating scale symptom levels,” Biological Psychiatry, vol. 61, no. 8, pp. 233S–233S, 2007. View at Google Scholar
  14. D. M. Labiner and G. L. Ahern, “Vagus nerve stimulation therapy in depression and epilepsy: therapeutic parameter settings,” Acta Neurologica Scandinavica, vol. 115, no. 1, pp. 23–33, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Heck, S. L. Helmers, and C. M. DeGiorgio, “Vagus nerve stimulation therapy, epilepsy, and device parameters: scientific basis and recommendations for use,” Neurology, vol. 59, no. 6, supplement 4, pp. S31–S37, 2002. View at Google Scholar · View at Scopus
  16. I. I. Ali, N. A. Pirzada, Y. Kanjwal et al., “Complete heart block with ventricular asystole during left vagus nerve stimulation for epilepsy,” Epilepsy and Behavior, vol. 5, no. 5, pp. 768–771, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. P. J. Schwartz, “Vagal stimulation for heart diseases: from animals to men—an example of translational cardiology,” Circulation Journal, vol. 75, no. 1, pp. 20–27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. R. Butson, I. O. Miller, R. A. Normann, and G. A. Clark, “Selective neural activation in a histologically derived model of peripheral nerve,” Journal of Neural Engineering, vol. 8, no. 3, Article ID 036009, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. R. B. Stein, D. Charles, and L. Davis, “Principles underlying new methods for chronic neural recording,” Canadian Journal of Neurological Sciences, vol. 2, no. 3, pp. 235–244, 1975. View at Google Scholar · View at Scopus
  20. G. G. Naples, J. D. Sweeny, and J. T. Mortimer, “Implantable cuff, Method and manufacture, and Method of installation,” Inventors, U. S. Patent #4, 602, 624, 1986.
  21. J. D. Sweeney, D. A. Ksienski, and J. T. Mortimer, “A nerve cuff technique for selective excitation of peripheral nerve trunk regions,” IEEE Transactions on Biomedical Engineering, vol. 37, no. 7, pp. 706–715, 1990. View at Publisher · View at Google Scholar · View at Scopus
  22. E. V. Goodall, L. M. Kosterman, J. Holsheimer, and J. J. Struijk, “Modeling study of activation and propagation delays during stimulation of peripheral nerve fibers with a tripolar cuff electrode,” IEEE Transactions on Rehabilitation Engineering, vol. 3, no. 3, pp. 272–282, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Sahin and D. M. Durand, “Selective recording with a multi-contact nerve cuff electrode,” in Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '96), pp. 369–370, October-November 1996. View at Scopus
  24. A. Q. Choi, J. K. Cavanaugh, and D. M. Durand, “Selectivity of multiple-contact nerve cuff electrodes: a simulation analysis,” IEEE Transactions on Biomedical Engineering, vol. 48, no. 2, pp. 165–172, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Rieger, J. Taylor, E. Comi et al., “Experimental determination of compound action potential direction and propagation velocity from multi-electrode nerve cuffs,” Medical Engineering and Physics, vol. 26, no. 6, pp. 531–534, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. H. H. Hoffman and A. Kuntz, “Vagus nerve components,” The Anatomical Record, vol. 127, no. 3, pp. 551–567, 1957. View at Google Scholar · View at Scopus
  27. J. C. Williams, J. A. Hippensteel, J. Dilgen, W. Shain, and D. R. Kipke, “Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants,” Journal of Neural Engineering, vol. 4, no. 4, pp. 410–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. H. S. Gasser, “The classification of nerve fibers,” Ohio Journal of Science, vol. 41, no. 3, pp. 145–159, 1941. View at Google Scholar
  29. E. Agostoni, J. E. Chinnock, M. de Burgh Daly, and J. G. MURRAY, “Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat,” The Journal of Physiology, vol. 135, no. 1, pp. 182–205, 1957. View at Google Scholar · View at Scopus
  30. H. N. Schnitzlein, L. C. Rowe, and H. H. Hoffman, “The myelinated component of the vagus nerve in man,” Anatomical Record, vol. 131, pp. 649–666, 1958. View at Publisher · View at Google Scholar
  31. R. M. McAllen and K. M. Spyer, “Two types of vagal preganglionic motoneurones projecting to the heart and lungs,” Journal of Physiology, vol. 282, pp. 353–364, 1978. View at Google Scholar · View at Scopus
  32. L. Rossi, “Histology of cardiac vagal innervation in man,” in Vagal Control of the Heart: Experimental Basis and Clinical Implications, M. N. Levy, Ed., pp. 3–20, Futura Publishing, Armonk, NY, USA, 1994. View at Google Scholar
  33. K. M. Spyer, P. A. Brooks, and P. N. Izzo, “Vagal preganglionic neurons supplying the heart,” in Vagal Control of the Heart: Experimental Basis and Clinical Implications, M. N. Levy, Ed., pp. 45–64, Futura Publishing, Armonk, NY, USA, 1994. View at Google Scholar
  34. S. Nosaka, K. Yasunaga, and S. Tamai, “Vagal cardiac preganglionic neurons: distribution, cell types, and reflex discharges,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 12, no. 1, pp. R92–R98, 1982. View at Google Scholar · View at Scopus
  35. J. F. X. Jones, Y. Wang, and D. Jordan, “Dorsal medullary neurones activated by stimulation of the cardiac vagal branch of the anaesthetized rat, and their behaviour during the pulmonary chemoreflex,” Journal of Physiology, vol. 483, pp. 89–90, 1995. View at Google Scholar
  36. J. F. X. Jones, Y. Wang, and D. Jordan, “Activity of C fibre cardiac vagal efferents in anaesthetized cats and rats,” Journal of Physiology, vol. 507, no. 3, pp. 869–880, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Cheng and T. L. Powley, “Nucleus ambiguus projections to cardiac ganglia of rat atria: an anterograde tracing study,” Journal of Comparative Neurology, vol. 424, no. 4, pp. 588–606, 2000. View at Google Scholar · View at Scopus
  38. H. H. Hoffman and H. N. Schnitzlein, “The numbers of nerve fibers in the vagus nerve of man,” The Anatomical Record, vol. 139, pp. 429–435, 1961. View at Google Scholar · View at Scopus
  39. Z.-P. Fang and J. T. Mortimer, “Selective activation of small motor axons by quasitrapezoidal current pulses,” IEEE Transactions on Biomedical Engineering, vol. 38, no. 2, pp. 168–174, 1991. View at Publisher · View at Google Scholar · View at Scopus
  40. R. FitzHugh, “Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber,” Biophysical Journal, vol. 2, no. 1, pp. 11–21, 1962. View at Google Scholar · View at Scopus
  41. R. Stampfli, “Saltatory conduction in nerve,” Physiological Reviews, vol. 34, no. 1, pp. 101–112, 1954. View at Google Scholar
  42. W. A. H. Rushton, “A theory of the effects of fibre size in medullated nerve,” Journal of Physiology, vol. 115, no. 1, pp. 101–122, 1951. View at Google Scholar
  43. H. S. Gasser and J. Erlanger, “The role played by the sizes of the constituent fibers of a nerve-trunk in determining the form of its action potencial wave,” American Journal of Physiology, vol. 80, pp. 522–547, 1927. View at Google Scholar
  44. D. F. Stegeman and J. P. C. de Weerd, “Modelling compound action potentials of peripheral nerves in situ. I. Model description: evidence for a non-linear relation between fibre diameter and velocity,” Electroencephalography and Clinical Neurophysiology, vol. 54, no. 4, pp. 436–448, 1982. View at Publisher · View at Google Scholar · View at Scopus
  45. E. R. Kandel, J. F. Schwartz, and T. M. Jessell, Principles of Neural Science, Elsevier Science, New York, NY, USA, 3rd edition, 1991.
  46. G. M. Manzano, L. M. P. Giuliano, and J. A. M. Nóbrega, “A brief historical note on the classification of nerve fibers,” Arquivos de Neuro-Psiquiatria, vol. 66, no. 1, pp. 117–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. J. G. Whitwam, “Classification of peripheral nerve fibres. An historical perspective,” Anaesthesia, vol. 31, no. 4, pp. 494–503, 1976. View at Google Scholar · View at Scopus
  48. D. R. McNeal and D. A. Teicher, “Effect of electrode placement on threshold and initial site of excitation of a myelinated nerve fibre,” in Functional Electrical Stimulation, F. T. Hambrecht and J. B. Reswick, Eds., pp. 405–412, Marcel Dekker, New York, NY, USA, 1977. View at Google Scholar
  49. C. van den Honert and J. T. Mortimer, “The response of the myelinated nerve fiber to short duration biphasic stimulating currents,” Annals of Biomedical Engineering, vol. 7, no. 2, pp. 117–125, 1979. View at Google Scholar · View at Scopus
  50. P. H. Gorman and J. T. Mortimer, “The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation,” IEEE Transactions on Biomedical Engineering, vol. 30, no. 7, pp. 407–414, 1983. View at Google Scholar · View at Scopus
  51. N. Accornero, G. Bini, G. L. Lenzi, and M. Manfredi, “Selective activation of peripheral nerve fiber groups of different diameter by triangular shaped stimulus pulses,” Journal of Physiology, vol. 273, no. 3, pp. 539–560, 1977. View at Google Scholar · View at Scopus
  52. K. Fukushima, O. Yahara, and M. Kato, “Differential blocking of motor fibers by direct current,” Pflügers Archiv European Journal of Physiology, vol. 358, no. 3, pp. 235–242, 1975. View at Publisher · View at Google Scholar · View at Scopus
  53. D. R. McNeal, “Analysis of a model for excitation of myelinated nerve,” IEEE Transactions on Biomedical Engineering, vol. 23, no. 4, pp. 329–337, 1976. View at Google Scholar · View at Scopus
  54. W. F. Agnew and D. B. McCreery, “Considerations for safety with chronically implanted nerve electrodes,” Epilepsia, vol. 31, no. 2, pp. S27–S32, 1990. View at Google Scholar · View at Scopus
  55. B. Onaral, H. H. Sun, and H. P. Schwan, “ELECTRICAL PROPERTIES OF BIOELECTRODES,” IEEE Transactions on Biomedical Engineering, vol. 31, no. 12, pp. 827–832, 1984. View at Google Scholar · View at Scopus
  56. S. Sunderland and G. M. Bedbrook, “The cross-sectional area of peripheral nerve trunks occupied by the fibres representing individual muscular and cutaneous branches,” Brain, vol. 72, no. 4, pp. 613–624, 1949. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Gu, R. E. Gander, and E. C. Crichlow, “Determination of nerve conduction velocity distribution from sampled compound action potential signals,” IEEE Transactions on Biomedical Engineering, vol. 43, no. 8, pp. 829–838, 1996. View at Publisher · View at Google Scholar · View at Scopus
  58. W. H. Olsen and S. L. BeMent, “Compound action potential reconstructions and predicted fiber diameter distributions,” in In Conduction Velocity Distributions, L. J. Dorfman, K. L. Cummins, and L. J. Leifer, Eds., pp. 57–83, Alan R. Liss, New York, NY, USA, 1981. View at Google Scholar
  59. J. J. Struijk, M. K. Haugland, and M. Thomsen, “Fascicle selective recording with a nerve cuff electrode,” in Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '96), pp. 361–362, October-November 1996. View at Scopus
  60. P. R. Christensen, Y. Chen, K. D. Strange, and J. A. Hoffer, “Multichannel recordings from peripheral nerves: 3. Evaluation of selectivity using mechanical stimulation of individual digits,” in Proceedings 2nd Annual Conference of the International Functional Electrical Stimulation Society (IFESS '97), p. 110, August 1997.
  61. J. Zariffa, M. K. Nagai, M. Schuettler, T. Stieglitz, Z. J. Daskalakis, and M. R. Popovic, “Use of an experimentally derived leadfield in the peripheral nerve pathway discrimination problem,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 2, pp. 147–156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Wodlinger and D. M. Durand, “Selective recovery of fascicular activity in peripheral nerves,” Journal of Neural Engineering, vol. 8, no. 5, Article ID 056005, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. I. F. Triantis, A. Demosthenous, and N. Donaldson, “On cuff imbalance and tripolar ENG amplifier configurations,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 2, pp. 314–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Vuckovic, M. Tosato, and J. J. Struijk, “A comparative study of three techniques for diameter selective fiber activation in the vagal nerve: anodal block, depolarizing prepulses and slowly rising pulses,” Journal of Neural Engineering, vol. 5, no. 3, pp. 275–286, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. S. C. M. A. Ordelman, L. Kornet, R. Cornelussen, H. P. J. Buschman, and P. H. Veltink, “An indirect component in the evoked compound action potential of the vagal nerve,” Journal of Neural Engineering, vol. 7, no. 6, Article ID 066001, 2010. View at Publisher · View at Google Scholar · View at Scopus