Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 363572, 10 pages
Research Article

Block Volume Estimation from the Discontinuity Spacing Measurements of Mesozoic Limestone Quarries, Karaburun Peninsula, Turkey

1Department of Geotechnics, Torbali Vocational School, Dokuz Eylul University, 35860 Izmir, Turkey
2Department of Geological Engineering, Faculty of Engineering, Dokuz Eylul University, 35160 Izmir, Turkey

Received 5 August 2013; Accepted 1 October 2013; Published 13 February 2014

Academic Editors: G. Racki and M. Razack

Copyright © 2014 Hakan Elci and Necdet Turk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Block volumes are generally estimated by analyzing the discontinuity spacing measurements obtained either from the scan lines placed over the rock exposures or the borehole cores. Discontinuity spacing measurements made at the Mesozoic limestone quarries in Karaburun Peninsula were used to estimate the average block volumes that could be produced from them using the suggested methods in the literature. The Block Quality Designation (BQD) ratio method proposed by the authors has been found to have given in the same order of the rock block volume to the volumetric joint count () method. Moreover, dimensions of the 2378 blocks produced between the years of 2009 and 2011 in the working quarries have been recorded. Assuming, that each block surfaces is a discontinuity, the mean block volume (), the mean volumetric joint count () and the mean block shape factor of the blocks are determined and compared with the estimated mean in situ block volumes () and volumetric joint count () values estimated from the in situ discontinuity measurements. The established relations are presented as a chart to be used in practice for estimating the mean volume of blocks that can be obtained from a quarry site by analyzing the rock mass discontinuity spacing measurements.