Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 378950, 12 pages
Research Article

Evaluation of Arbuscular Mycorrhizal Fungi Capacity to Alleviate Abiotic Stress of Olive (Olea europaea L.) Plants at Different Transplant Conditions

1Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, 4to Piso, Pabellón 2, C1428EGA Buenos Aires, Argentina
2Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352 Bernal, B1876BXD Buenos Aires, Argentina
3Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain

Received 19 November 2013; Accepted 22 December 2013; Published 12 February 2014

Academic Editors: A. Roldán Garrigós and D. X. Tan

Copyright © 2014 María Josefina Bompadre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Porras-Soriano, M. L. Soriano-Martín, A. Porras-Piedra, and R. Azcón, “Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions,” Journal of Plant Physiology, vol. 166, no. 13, pp. 1350–1359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Franco, S. Bañón, M. J. Vicente, J. Miralles, and J. J. Martínez-Sánchez, “Root development in horticultural plants grown under abiotic stress conditions—a review,” Journal of Horticultural Science and Biotechnology, vol. 86, no. 6, pp. 543–556, 2011. View at Google Scholar · View at Scopus
  3. E. F. Elstner, “Oxygen activation and oxygen toxicity,” Annual Review of Plant Physiology, vol. 33, pp. 73–96, 1982. View at Google Scholar
  4. K. Asada, “The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons,” Annual Review of Plant Biology, vol. 50, pp. 601–639, 1999. View at Google Scholar · View at Scopus
  5. E. A. Bacelar, D. L. Santos, J. M. Moutinho-Pereira, B. C. Gonçalves, H. F. Ferreira, and C. M. Correia, “Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: changes on structure and chemical composition of foliage and oxidative damage,” Plant Science, vol. 170, no. 3, pp. 596–605, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Mittler, S. Vanderauwera, M. Gollery, and F. van Breusegem, “Reactive oxygen gene network of plants,” Trends in Plant Science, vol. 9, no. 10, pp. 490–498, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Marin, “Arbuscular mycorrhizal inoculation in nursery practice,” in Handbook of Microbial Biofertilizers, M. K. Oxford Rai, Ed., pp. 289–324, Food Products Press, New York, NY, USA, 2005. View at Google Scholar
  8. P. Bonfante and A. Genre, “Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis,” Nature Communications, vol. 1, no. 4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Azcón-Aguilar and J. M. Barea, “Applying mycorrhiza biotechnology to horticulture: significance and potentials,” Scientia Horticulturae, vol. 68, no. 1–4, pp. 1–24, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. F. T. Jr. Davies, J. A. Saraiva Grossi, L. Carpio, and A. A. Estrada-Luna, “Colonization and growth effects on the mycorrhizal fungus Glomus intraradices in a commercial nursery container production system,” Journal of Environmental Horticulture, vol. 18, no. 4, pp. 247–251, 2000. View at Google Scholar
  11. S. Gianinazzi, A. Gollotte, M.-N. Binet, D. van Tuinen, D. Redecker, and D. Wipf, “Agroecology: the key role of arbuscular mycorrhizas in ecosystem services,” Mycorrhiza, vol. 20, no. 8, pp. 519–530, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Cavagnaro, J. Juárez, M. Bauza, and R. W. Masuelli, “Discriminación de variedades de olivo a través del uso de caracteres morfológicos y de marcadores moleculares,” Agriscienta, vol. 18, pp. 27–35, 2001. View at Google Scholar
  13. A. S. Citernesi, C. Vitagliano, and M. Giovannetti, “Plant growth and root system morphology of Olea europaea L. rooted cuttings as influenced by arbuscular mycorrhizas,” Journal of Horticultural Science and Biotechnology, vol. 73, no. 5, pp. 647–654, 1998. View at Google Scholar · View at Scopus
  14. A. Porras Piedra, M. L. Soriano Martín, A. Porras Soriano, and G. Fernández Izquierdo, “Influence of arbuscular mycorrhizas on the growth rate of mist-propagated olive plantlets,” Spanish Journal of Agricultural Research, vol. 3, no. 1, pp. 98–105, 2005. View at Google Scholar
  15. P. Castillo, A. I. Nico, C. Azcón-Aguilar, C. del Río Rincón, C. Calvet, and R. M. Jiménez-Díaz, “Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi,” Plant Pathology, vol. 55, no. 5, pp. 705–713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Knight, C. H. Coker, J. M. Anderson, D. S. Murchison, and C. E. Watson, “Mist interval and K-IBA concentration influence rooting of orange and mountain azalea,” Native Plants, pp. 111–117, 2005. View at Google Scholar
  17. V. A. Silvani, Aislamiento y Caracterización in vitro de hongos micorrícicos arbusculares de diferentes sitios en Argentina [Ph.D. thesis], Facultad de Ciencias Exactas y Naturales, UBA, 2011.
  18. E. J. Hewitt, “Sand and water culture methods in the study of plant nutrition,” Technical Communication vol. 22, Commonwealth Agricultural Bureau, Farnham Royal, UK, 1952. View at Google Scholar
  19. J. M. Phillips and D. S. Hayman, “Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infections,” Transactions of the British Mycological Society, vol. 55, pp. 158–161, 1970. View at Google Scholar
  20. M. Giovanetti and B. Mosse, “An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots,” New Phytologyst, vol. 84, pp. 489–500, 1980. View at Google Scholar
  21. T. P. McGonigle, M. H. Miller, D. G. Evans, G. L. Fairchild, and J. A. Swan, “A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi,” New Phytologist, vol. 115, no. 3, pp. 495–501, 1990. View at Google Scholar · View at Scopus
  22. J. A. Menge, E. L. V. Johnson, and R. G. Platt, “Mycorrhizal dependency of several citrus cultivars under three nutrient regimes,” New Phytologyst, vol. 81, no. 3, pp. 553–559, 1978. View at Google Scholar
  23. Y. Gogorcena, I. Iturbe-Ormaetxe, P. R. Escuredo, and M. Becana, “Antioxidant defenses against activated oxygen in pea nodules subjected to water stress,” Plant Physiology, vol. 108, no. 2, pp. 753–759, 1995. View at Google Scholar · View at Scopus
  24. H. Aebi, “Catalase in vitro,” Methods in Enzymology, vol. 105, pp. 121–126, 1984. View at Publisher · View at Google Scholar · View at Scopus
  25. M. A. Hossain and K. Asada, “Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxide: its protection by ascorbate,” Plant and Cell Physiology, vol. 25, no. 7, pp. 1285–1295, 1984. View at Google Scholar · View at Scopus
  26. J. F. Moran, M. Becana, I. Iturbe-Ormaetxe, S. Frechilla, R. V. Klucas, and P. Aparicio-Tejo, “Drought induces oxidative stress in pea plants,” Planta, vol. 194, no. 3, pp. 346–352, 1994. View at Google Scholar · View at Scopus
  27. W. F. Beyer Jr. and I. Fridovich, “Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions,” Analytical Biochemistry, vol. 161, no. 2, pp. 559–566, 1987. View at Google Scholar · View at Scopus
  28. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  29. D. M. Hodges, J. M. DeLong, C. F. Forney, and R. K. Prange, “Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds,” Planta, vol. 207, no. 4, pp. 604–611, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. A. G. Clewer and D. H. Scarisbrick, “Factorial experiments,” in Practical Statistics and Experimental Design for Plant and Crop Science, pp. 159–181, John Wiley & Sons, Chichester, UK, 2001. View at Google Scholar
  31. L. A. Carpio, F. T. Davies, and M. A. Arnold, “Effect of commercial mycorrhiza on growth, survivability, and subsequent landscape performance of selected container grown ornamental nursery crops,” in Proceedings of the SNA Research Conference, vol. 48, pp. 45–48, 2003.
  32. R. Calvente, C. Cano, N. Ferrol, C. Azcón-Aguilar, and J. M. Barea, “Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets,” Applied Soil Ecology, vol. 26, no. 1, pp. 11–19, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. M. M. Alguacil, J. A. Hernández, F. Caravaca, B. Portillo, and A. Roldán, “Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil,” Physiologia Plantarum, vol. 118, no. 4, pp. 562–570, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. L. A. Carpio, F. T. Davies Jr., and M. A. Arnold, “Arbuscular mycorrhizal fungi, organic and inorganic controlled-release fertilizers: effect on growth and leachate of container-grown bush morning glory (Ipomoea carnea ssp. fistulosa) under high production temperatures,” Journal of the American Society for Horticultural Science, vol. 130, no. 1, pp. 131–139, 2005. View at Google Scholar · View at Scopus
  35. A. Sofo, S. Manfreda, M. Fiorentino, B. Dichio, and C. Xiloyannis, “The olive tree: aparadigm for drought tolerance in Mediterranean climates,” Hydrology and Earth System Sciences, vol. 12, no. 1, pp. 293–301, 2008. View at Google Scholar · View at Scopus
  36. J. M. Ruíz-Lozano, R. Porcel, C. Azcón, and R. Aroca, “Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies,” Journal of Experimental Botany, vol. 63, no. 11, pp. 4033–4044, 2012. View at Google Scholar
  37. Q. S. Wu, Y. N. Zou, and R. X. Xia, “Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots,” European Journal of Soil Biology, vol. 42, no. 3, pp. 166–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. M. J. Bompadre, M. C. Rios de Molina, R. P. Colombo et al., “Differential efficiency of two strains of the arbuscular mycorrhizal fungus Rhizophagus irregularis on olive (Olea europaea) plants under two water regimes,” Symbiosis, vol. 61, no. 2, pp. 105–112, 2013. View at Publisher · View at Google Scholar