Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 379326, 8 pages
http://dx.doi.org/10.1155/2014/379326
Research Article

Numerical Simulation on Zonal Disintegration in Deep Surrounding Rock Mass

1Institute of Tunnel and Urban Railway Engineering, Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China
2State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining & Technology, Xuzhou 221000, China

Received 13 October 2013; Accepted 21 November 2013; Published 30 January 2014

Academic Editors: B. Lin and B. Uy

Copyright © 2014 Xuguang Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. I. Shemyakin, G. L. Fisenko, M. V. Kurlenya et al., “Zonal disintegration of rocks around underground workings—part 1: data of in situ observations,” Soviet Mining Science, vol. 22, no. 3, pp. 157–168, 1986. View at Publisher · View at Google Scholar · View at Scopus
  2. Q. H. Qian, “The characteristic scientific phenomena of engineering response to deep rock mass and the implication of deepness,” Journal of East China Institute of Technology, vol. 27, no. 1, pp. 1–5, 2004. View at Google Scholar
  3. G. R. Adams and A. J. Jager, “Etroscopic observations of rock fracturing ahead of the stope faces in deep-level gold mines,” Journal of the South African Institute of Mining and Metallurgy, vol. 21, no. 2, pp. 115–127, 1980. View at Google Scholar · View at Scopus
  4. E. I. Shemyakin, G. L. Fisenko, M. V. Kurlenya et al., “Zonal disintegration of rocks around underground workings—part II: rock fracture simulated in equivalent materials,” Soviet Mining Science, vol. 22, no. 4, pp. 223–232, 1986. View at Publisher · View at Google Scholar · View at Scopus
  5. E. I. Shemyakin, G. L. Fisenko, M. V. Kurlenya et al., “Zonal disintegration of rocks around underground mines—part III: theoretical concepts,” Soviet Mining Science, vol. 23, no. 1, pp. 1–6, 1987. View at Publisher · View at Google Scholar · View at Scopus
  6. E. I. Shemyakin, M. V. Kurlenya, V. N. Oparin et al., “Zonal disintegration of rocks around underground workings. IV: practical applications,” Soviet Mining Science, vol. 25, no. 4, pp. 297–302, 1989. View at Publisher · View at Google Scholar · View at Scopus
  7. B. V. Laptev and R. P. Potekhin, “Burst triggering by zonal disintegration of evaporites,” Soviet Mining Science, vol. 24, no. 3, pp. 238–241, 1988. View at Publisher · View at Google Scholar · View at Scopus
  8. E. J. Sellers and P. Klerck, “Modelling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels,” Tunnelling and Underground Space Technology, vol. 15, no. 4, pp. 463–469, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. D. F. Malan and S. M. Spottiswoode, “Time-dependent fracture zone behavior and seismicity surrounding deep level stopping operations,” in Rockbursts and Seismicity in Mines, S. J. Gibowicz and S. Lasocki, Eds., pp. 173–177, A. A. Balkema, Rotterdam, The Netherlands, 1997. View at Google Scholar
  10. X. Zhou, Q. Qian, and B. Zhang, “Zonal disintegration mechanism of deep crack-weakened rock masses under dynamic unloading,” Acta Mechanica Solida Sinica, vol. 22, no. 3, pp. 240–250, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Gu, L. Gu, A. Chen, J. Xu, and W. Chen, “Model test study on mechanism of layered fracture within surrounding rock of tunnels in deep stratum,” Chinese Journal of Rock Mechanics and Engineering, vol. 27, no. 3, pp. 433–438, 2008. View at Google Scholar · View at Scopus
  12. V. N. Oparin and M. V. Kurlenya, “Gutenberg velocity section of the earth and its possible geomechanical explanation. I. Zonal disintegration and the hierarchical series of geoblocks,” Journal of Mining Science, vol. 30, no. 2, pp. 97–108, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. A. F. Borzykh, “Features of the zonal disintegration of roof rocks and a coal seam around mine workings,” Soviet Mining Science, vol. 26, no. 5, pp. 418–427, 1990. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Tang and Y. Zhang, “Discussion on mechanism and evolution laws of fracture spacing in rock mass,” Chinese Journal of Rock Mechanics and Engineering, vol. 27, no. 7, pp. 1362–1369, 2008. View at Google Scholar · View at Scopus
  15. E. Fumagalli, Statical and Geomechanical Models, Springer, New York, NY, USA, 1973.
  16. E. Fumagalli, “Geomechanical models of dam foundation,” in Proceedings of the International Colloquium on Physical and Geomechanical Models, Bergamo, Italy, 1979.
  17. C. Xu-Guang, Z. Qiang-Yong, and W. Yuan, “Model test of anchoring effect on zonal disintegration in deep surrounding rock masses,” The Scientific World Journal, vol. 2013, Article ID 935148, 16 pages, 2013. View at Publisher · View at Google Scholar
  18. C. Xuguang and W. Yuan, “Energy dissipation and release during rock burst,” Disaster Advances, vol. 9, no. 6, pp. 48–54, 2013. View at Google Scholar
  19. Q. H. Qian, X. P. Zhou, H. Q. Yang, Y. X. Zhang, and X. H. Li, “Zonal disintegration of surrounding rock mass around the diversion tunnels in Jinping II Hydropower Station, Southwestern China,” Theoretical and Applied Fracture Mechanics, vol. 51, no. 2, pp. 129–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H.-Y. Wang, “Numerical simulation on disintegration of surrounding rock mass in deep mine roadways,” Journal of the China Coal Society, vol. 35, no. 4, pp. 535–540, 2010. View at Google Scholar · View at Scopus
  21. T. Belytschko and T. Black, “Elastic crack growth in finite elements with minimal remeshing,” International Journal for Numerical Methods in Engineering, vol. 45, no. 5, pp. 601–620, 1999. View at Google Scholar · View at Scopus