Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 379763, 15 pages
http://dx.doi.org/10.1155/2014/379763
Research Article

Runoff Potentiality of a Watershed through SCS and Functional Data Analysis Technique

1Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
2Institute of Environmental and Water Resource Management (IPASA), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
3Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND 58108-6050, USA

Received 9 April 2014; Revised 27 June 2014; Accepted 12 July 2014; Published 24 July 2014

Academic Editor: João Corte-Real

Copyright © 2014 M. I. Adham et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. G. Chandler and M. F. Walter, “Runoff responses among common land uses in the uplands of Matalom, Leyte, Philippines,” Transactions of the American Society of Agricultural Engineers, vol. 41, no. 6, pp. 1635–1641, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. J. P. Patil, A. Sarangi, O. P. Singh, A. K. Singh, and T. Ahmad, “Development of a GIS interface for estimation of runoff from watersheds,” Water Resources Management, vol. 22, no. 9, pp. 1221–1239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Zhang, X. Zhang, and X. Hu, “Runoff and soil erosion as affected by plastic mulch patterns in vegetable field at Dianchi lake's catchment, China,” Agricultural Water Management, vol. 122, pp. 20–27, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Morbidelli, C. Corradini, C. Saltalippi, and L. Brocca, “Initial soil water content as input to field-scale infiltration and surface runoff models,” Water Resources Management, vol. 26, no. 7, pp. 1793–1807, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. H. H. Khan, A. Khan, S. Ahmed, and J. Perrin, “GIS-based impact assessment of land-use changes on groundwater quality: study from a rapidly urbanizing region of South India,” Environmental Earth Sciences, vol. 63, no. 6, pp. 1289–1302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Dimitriou and E. Moussoulis, “Land use change scenarios and associated groundwater impacts in a protected peri-urban area,” Environmental Earth Sciences, vol. 64, no. 2, pp. 471–482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Shirazi, S. Akib, F. A. Salman, U. J. Alengaram, and M. Jameel, “Agro-ecological aspects of groundwater utilization: a case study,” Scientific Research and Essays, vol. 5, no. 18, pp. 2786–2795, 2010. View at Google Scholar · View at Scopus
  8. S. M. Shirazi, Z. Ismail, S. Akib, M. Sholichin, and M. A. Islam, “Climatic parameters and net irrigation requirement of crops,” International Journal of Physical Sciences, vol. 6, no. 1, pp. 15–26, 2011. View at Google Scholar · View at Scopus
  9. S. M. Shirazi, H. M. Imran, and S. Akib, “GIS-based DRASTIC method for groundwater vulnerability assessment: a review,” Journal of Risk Research, vol. 15, no. 8, pp. 991–1011, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. B. H. Hendrickson, A. P. Barnett, and O. W. Beale, Conservation Methods for Soils of the Southern Piedmont, vol. 269 of Agriculture Information Bulletin, US Department of Agriculture, Washington, DC, USA, 1963.
  11. S. W. Trimble, Man Induced Soil Erosion on the Southern Piedmont, 1770–1970, edited by E. Tsykin, Soil Conservation Society of America, 1974.
  12. J. R. Carreker, S. R. Wilkinson, A. P. Barnett, and J. E. Box Jr., “Soil and water management systems for sloping land,” Tech. Rep. ARS-S-160, US Department of Agriculture, Washington, DC, USA, 1978. View at Google Scholar
  13. M. Ghashghaei, A. Bagheri, and S. Morid, “Rainfall-runoff modeling in a watershed scale using an object oriented approach based on the concepts of system dynamics,” Water Resources Management, vol. 27, no. 15, pp. 5119–5141, 2013. View at Publisher · View at Google Scholar
  14. M. R. Knebl, Z.-L. Yang, K. Hutchison, and D. R. Maidment, “Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/ RAS: a case study for the San Antonio River Basin Summer 2002 storm event,” Journal of Environmental Management, vol. 75, no. 4, pp. 325–336, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. C. McColl and G. Aggett, “Land-use forecasting and hydrologic model integration for improved land-use decision support,” Journal of Environmental Management, vol. 84, no. 4, pp. 494–512, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Hillel, Applications of Soil Physics, vol. 7, Academic Press, New York, NY, USA, 1980.
  17. J. L. M. P. de Lima, P. Tavares, V. P. Singh, and M. I. P. de Lima, “Investigating the nonlinear response of soil loss to storm direction using a circular soil flume,” Geoderma, vol. 152, no. 1-2, pp. 9–15, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Melesse and S. F. Shih, “Spatially distributed storm runoff depth estimation using Landsat images and GIS,” Computers and Electronics in Agriculture, vol. 37, no. 1–3, pp. 173–183, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Gaudin, F. Celette, and C. Gary, “Contribution of runoff to incomplete off season soil water refilling in a Mediterranean vineyard,” Agricultural Water Management, vol. 97, no. 10, pp. 1534–1540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. Soil Conservation Service (SCS), National Engineering Handbook, Section 4, Hydrology, U.S. Government Printing Office, 1972.
  21. R. H. Hawkins, “Runoff curve numbers with varying site moisture,” Journal of Irrigation and Drainage Engineering, vol. 104, no. 4, pp. 389–398, 1978. View at Google Scholar · View at Scopus
  22. R. M. Ragan and T. J. Jackson, “Runoff synthesis using Landsat and SCS model,” Journal of the Hydraulics Division, ASCE, vol. 106, no. 5, pp. 667–678, 1980. View at Google Scholar · View at Scopus
  23. R. B. Slack and R. Welch, “Soil conservation service runoff curve number estimates from Landsat data,” Water Resources Bulletin, vol. 16, no. 5, pp. 887–893, 1980. View at Google Scholar
  24. R. H. Hawkins, “Asymptotic determination of runoff curve numbers from data,” Journal of Irrigation & Drainage Engineering, vol. 119, no. 2, pp. 334–345, 1993. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Lewis, M. J. Singer, and K. W. Tate, “Applicability of SCS curve number method for a California Oak woodlands watershed,” Journal of Soil and Water Conservation, vol. 55, no. 2, pp. 226–230, 2000. View at Google Scholar · View at Scopus
  26. V. Mockus, “Hydrology,” in National Engineering Handbook, Supplement A, Section 4, Chapter 10, Soil Conservation Service, USDA, Washington, Wash, USA, 1985. View at Google Scholar
  27. V. M. Ponce and R. H. Hawkins, “Runoff curve number: has it reached maturity?” Journal of Hydrologic Engineering, vol. 1, no. 1, pp. 11–19, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Chen, Y. Xu, and Y. Yin, “Impacts of land use change scenarios on storm-runoff generation in Xitiaoxi basin, China,” Quaternary International, vol. 208, no. 1-2, pp. 121–128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Gardiner and K. J. Gregory, “Drainage density in rainfall runoff modeling,” in Proceedings of the International Symposium on Rainfall-Runoff Modelling, V. P. Singh, Ed., pp. 449–476, Mississippi State University, Mississippi State, Miss, USA, 1981.
  30. V. Warren and L. L. Gary, Introduction to Hydrology, Prentice Hall, 15th edition, 2003.
  31. R. Carlesso, R. B. Spohr, F. L. F. Eltz, and C. H. Flores, “Runoff estimation in southern Brazil based on Smith's modified model and the Curve Number method,” Agricultural Water Management, vol. 98, no. 6, pp. 1020–1026, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. C. C. Truman, T. L. Potter, R. C. Nuti, D. H. Franklin, and D. D. Bosch, “Antecedent water content effects on runoff and sediment yields from two Coastal Plain Ultisols,” Agricultural Water Management, vol. 98, no. 8, pp. 1189–1196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Suhaila, A. A. Jemain, M. F. Hamdan, and W. Z. W. Zin, “Comparing rainfall patterns between regions in Peninsular Malaysia via a functional data analysis technique,” Journal of Hydrology, vol. 411, no. 3-4, pp. 197–206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. J. O. Ramsay and B. W. Silverman, Functional Data Analysis, Springer, New York, NY, USA, 2nd edition, 2005. View at MathSciNet
  35. F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Theory and Practice, Springer, New York, NY, USA, 2006. View at MathSciNet
  36. J. Suhaila and A. A. Jemain, “A comparison of the rainfall patterns between stations on the East and the West coasts of Peninsular Malaysia using the smoothing model of rainfall amounts,” Meteorological Applications, vol. 16, no. 3, pp. 391–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. O. D. Jimoh and P. Webster, “Stochastic modelling of daily rainfall in Nigeria: intra-annual variation of model parameters,” Journal of Hydrology, vol. 222, no. 1–4, pp. 1–17, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Coe and R. D. Stern, “Fitting models to daily rainfall data,” Journal of Applied Meteorology, vol. 21, no. 7, pp. 1024–1031, 1982. View at Publisher · View at Google Scholar · View at Scopus
  39. R. D. Stern and R. Coe, “A model fitting analysis of daily rainfall data,” Journals of the Royal Statistical Society A, vol. 147, no. 1, pp. 1–34, 1984. View at Publisher · View at Google Scholar
  40. D. A. Woolhiser and G. G. S. Pegram, “Maximum likelihood estimation of Fourier coefficients to describe seasonal variations of parameters in stochastic daily precipitation models,” Journal of Applied Meteorology, vol. 18, no. 1, pp. 34–44, 1979. View at Google Scholar · View at Scopus
  41. D. J. Garbutt, R. D. Stern, M. D. Dennett, and J. Elston, “A comparison of the rainfall climate of eleven places in West Africa using a two-part model for daily rainfall,” Archives for Meteorology, Geophysics, and Bioclimatology B, vol. 29, no. 1-2, pp. 137–155, 1981. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Efron, “Bootstrap methods: another look at the jackknife,” The Annals of Statistics, vol. 7, no. 1, pp. 1–26, 1979. View at Publisher · View at Google Scholar · View at MathSciNet
  43. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall, New York, NY, USA, 1994.
  44. L. W. Mays, Water Resources Engineering, John Wiley & Sons, 2005.
  45. B. Gumbo, N. Munyamba, G. Sithole, and H. H. G. Savenije, “Coupling of digital elevation model and rainfall-runoff model in storm drainage network design,” Physics and Chemistry of the Earth, vol. 27, no. 11–22, pp. 755–764, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. T. H. Wong, S. B. Mansor, M. R. Mispan, W. N. A. Sulaiman, and N. Ahmad, “An application of remote sensing in hydrology—a case study in Malaysia,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS '01), pp. 2152–2154, IEEE, July 2001. View at Scopus
  47. C. Michel, V. Andréassian, and C. Perrin, “Soil conservation service curve number method: how to mend a wrong soil moisture accounting procedure?” Water Resources Research, vol. 41, no. 2, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Shamshad, C. S. Leow, A. Ramlah, W. M. A. Wan Hussin, and S. A. Mohd. Sanusi, “Applications of AnnAGNPS model for soil loss estimation and nutrient loading for Malaysian conditions,” International Journal of Applied Earth Observation and Geoinformation, vol. 10, no. 3, pp. 239–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. Soil Conservation Service (SCS), “Urban hydrology for small watersheds,” SCS Technical Release 55, Soil Conservation Service, U.S. Dept of Agriculture, Washington, DC, USA, 1986. View at Google Scholar
  50. C. S. Leow, N. A. Zakaria, C. K. Chang, R. Abdullah, and A. A. Ghani, “Modelling urban river catchment: a case study in Malaysia,” Water Management, vol. 162, no. 1, pp. 25–34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. M. I. Seeni Mohd and M. Mohd Adli, “Application of remote sensing and hydrological modeling in flood prediction studies,” Malaysian Journal of Remote Sensing & GIS, vol. 1, pp. 91–98, 2000. View at Google Scholar
  52. J. S. Fifield, Designing for Effective Sediment and Erosion Control on Construction Sites, Forester Communications, Santa Barbara, Calif, USA, 2nd edition, 2004.