Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 480275, 14 pages
http://dx.doi.org/10.1155/2014/480275
Research Article

Snowfall in the Northwest Iberian Peninsula: Synoptic Circulation Patterns and Their Influence on Snow Day Trends

University of León, Instituto de Medio Ambiente (IMA), 24006 León, Spain

Received 1 April 2014; Revised 20 June 2014; Accepted 3 July 2014; Published 24 July 2014

Academic Editor: Aondover Tarhule

Copyright © 2014 Andrés Merino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Datla and S. Sharma, “Impact of cold and snow on temporal and spatial variations of highway traffic volumes,” Journal of Transport Geography, vol. 16, no. 5, pp. 358–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Bühler, S. Kumar, J. Veitinger, M. Christen, and A. Stoffel, “Automated identification of potential snow avalanche release areas based on digital elevation models,” Natural Hazards and Earth System Science, vol. 13, no. 5, pp. 1321–1335, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Bonelli, M. Lacavalla, P. Marcacci, G. Mariani, and G. Stella, “Wet snow hazard for power lines: a forecast and alert system applied in Italy,” Natural Hazards and Earth System Science, vol. 11, no. 9, pp. 2419–2431, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. A. Changnon and D. Changnon, “A spatial and temporal analysis of damaging snowstorms in the United States,” Natural Hazards, vol. 37, no. 3, pp. 373–389, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Dixon, S. Boon, and U. Silins, “Watershed-scale controls on snow accumulation in a small montane watershed, southwestern Alberta, Canada,” Hydrological Processes, vol. 28, pp. 1294–1306, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Uhlmann, S. Goyette, and M. Beniston, “Sensitivity analysis of snow patterns in Swiss ski resorts to shifts in temperature, precipitation and humidity under conditions of climate change,” International Journal of Climatology, vol. 29, no. 8, pp. 1048–1055, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Levizzani, S. Laviola, and E. Cattani, “Detection and measurement of snowfall from space,” Remote Sensing, vol. 3, no. 1, pp. 145–166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. D. Lundquist, P. J. Neiman, B. Martner, A. B. White, D. J. Gottas, and F. M. Ralph, “Rain versus snow in the Sierra Nevada, California: comparing doppler profiling radar and surface observations of melting level,” Journal of Hydrometeorology, vol. 9, no. 2, pp. 194–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Rohrer, “Determination of the transition air temperature from snow to rain and intensity of precipitation. Instruments and Observing Methods,” World Meteorological Organization Technical Report, vol. 328, no. 48, pp. 475–482, 1989. View at Google Scholar
  10. Y. L’Hôte, P. Chevallier, A. Coudrain, Y. Lejeune, and P. Etchevers, “Relationship between precipitation phase and air temperature: comparison between the Bolivian Andes and the Swiss Alps,” Hydrological Sciences Journal, vol. 50, no. 6, pp. 989–998, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Feiccabrino and A. Lundberg, “Precipitation phase discrimination by dew point and air temperature,” in Proceedings of the 75th Western Snow Conference, pp. 141–146, Kailua-Kona, Hawaii, USA, 2008.
  12. W. Sun, J. Wang, Z. Li, X. Yao, and J. Yu, “Influences of climate change on water resources availability in Jinjiang Basin, China,” The Scientific World Journal, vol. 2014, Article ID 908349, 7 pages, 2014. View at Publisher · View at Google Scholar
  13. Z. Hao, Q. Ju, W. Jiang, and C. Zhu, “Characteristics and scenarios projection of climate change on the tibetan plateau,” The Scientific World Journal, vol. 2013, Article ID 129793, 9 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. J. I. López-Moreno, S. Goyette, M. Beniston, and B. Alvera, “Sensitivity of the snow energy balance to climatic changes: implications for the evolution of snowpack in the Pyrenees in the 21st century,” Climate Research, vol. 36, no. 3, pp. 203–217, 2008. View at Google Scholar · View at Scopus
  15. M. Falarz, “Variability and trends in the duration and depth of snow cover in Poland in the 20th century,” International Journal of Climatology, vol. 24, no. 13, pp. 1713–1727, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Beniston, B. Uhlmann, S. Goyette, and J. I. Lopez-Moreno, “Will snow-abundant winters still exist in the Swiss Alps in an enhanced greenhouse climate?” International Journal of Climatology, vol. 31, no. 9, pp. 1257–1263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Dankers and O. B. Christensen, “Climate change impact on snow coverage, evaporation and river discharge in the sub-arctic Tana Basin, Northern Fennoscandia,” Climatic Change, vol. 69, no. 2-3, pp. 367–392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Mellander, M. O. Löfvenius, and H. Laudon, “Climate change impact on snow and soil temperature in boreal Scots pine stands,” Climatic Change, vol. 85, no. 1-2, pp. 179–193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. A. Changnon, “Catastrophic winter storms: an escalating problem,” Climatic Change, vol. 84, no. 2, pp. 131–139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. I. López-Moreno, S. Goyette, S. M. Vicente-Serrano, and M. Beniston, “Effects of climate change on the intensity and frequency of heavy snowfall events in the Pyrenees,” Climatic Change, vol. 105, no. 3-4, pp. 489–508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. R. Pons, D. San-Martín, S. Herrera, and J. M. Gutiérrez, “Snow trends in Northern Spain: analysis and simulation with statistical downscaling methods,” International Journal of Climatology, vol. 30, no. 12, pp. 1795–1806, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. P. Clark, M. C. Serreze, and D. Robinson, “Atmospheric controls on eurasian snow extent,” International Journal of Climatology, vol. 19, pp. 27–40, 1999. View at Google Scholar
  23. K. W. Birkeland and C. J. Mock, “Atmospheric circulation patterns associated with heavy snowfall events, Bridger Bowl, Montana, USA.,” Mountain Research and Development, vol. 16, no. 3, pp. 281–286, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Plaut, E. Schuepbach, and M. Doctor, “Heavy precipitation events over a few Alpine sub-regions and the links with large-scale circulation, 1971–1995,” Climate Research, vol. 17, no. 3, pp. 285–302, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Esteban, P. D. Jones, J. Martín-Vide, and M. Mases, “Atmospheric circulation patterns related to heavy snowfall days in Andorra, Pyrenees,” International Journal of Climatology, vol. 25, no. 3, pp. 319–329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Kalnay, M. Kanamitsu, R. Kistler et al., “The NCEP/NCAR 40-year reanalysis project,” Bulletin of the American Meteorological Society, vol. 77, no. 3, pp. 437–471, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. K. W. Birkeland and C. J. Mock, “Atmospheric circulation patterns associated with heavy snowfall events, Bridger Bowl, Montana, U.S.A.,” Mountain Research and Development, vol. 16, no. 3, pp. 281–286, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. R. B. Cattell, “The scree test for the number of factors,” Multivariate Behavioral Research, vol. 1, no. 2, pp. 245–276, 1966. View at Publisher · View at Google Scholar
  29. A. Pascual, M. L. Martín, F. Valero, M. Y. Luna, and A. Morata, “Wintertime connections between extreme wind patterns in Spain and large-scale geopotential height field,” Atmospheric Research, vol. 122, pp. 213–228, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. E. García-Ortega, L. López, and J. L. Sánchez, “Atmospheric patterns associated with hailstorm days in the Ebro Valley, Spain,” Atmospheric Research, vol. 100, no. 4, pp. 401–427, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Yarnal, Synoptic Climatology in Environmental Analysis, Bel Haven Press, London, UK, 1993.
  32. L. S. Kalkstein and J. A. Skindlov, “An evaluation of three clustering procedures for use in synoptic climatological classification,” Journal of Climate & Applied Meteorology, vol. 26, no. 6, pp. 717–730, 1987. View at Publisher · View at Google Scholar · View at Scopus
  33. G. R. North, T. L. Bell, and R. F. Calahan, “Sampling errors in the estimation of empirical orthogonal functions,” Monthly Weather Review, vol. 110, pp. 699–706, 1982. View at Google Scholar
  34. F. J. Hair Jr., E. E. Anderson, R. Tatham, and W. C. Black, Multivariate Data Analysis, Prentice-Hall, New Jersey, NJ, USA, 1998.
  35. M. B. Richman, “On the application of cluster analysis to growing season precipitation data in North America east of the Rockies,” Journal of Climate, vol. 8, no. 4, pp. 897–931, 1995. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Merino, E. García-Ortega, L. López, J. L. Sánchez, and A. M. Guerrero-Higueras, “Synoptic environment, mesoscale configurations and forecast parameters for hailstorms in Southwestern Europe,” Atmospheric Research, vol. 122, pp. 183–198, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. T. C. Peterson, D. R. Easterling, T. R. Karl et al., “Homogeneity adjustments of in situ atmospheric climate data: a review,” International Journal of Climatology, vol. 18, no. 13, pp. 1493–1517, 1998. View at Google Scholar
  38. H. von Storch and A. Navarra, Analysis of Climate Variability: Applications of Statistical Techniques, Springer, 1999.
  39. V. Conrad and L. W. Pollack, Methods in Climatology, Harvard University Press, Cambridge, Mass, USA, 1962.
  40. S. del Río, L. Herrero, C. Pinto-Gomes, and A. Penas, “Spatial analysis of mean temperature trends in Spain over the period 1961–2006,” Global and Planetary Change, vol. 78, no. 1-2, pp. 65–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Partal and E. Kahya, “Trend analysis in Turkish precipitation data,” Hydrological Processes, vol. 20, no. 9, pp. 2011–2026, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Salmi, A. Maatta, P. Anttila, T. Ruoho-Airola, and T. Amnell, Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates: The Excel Template Application MAKESENS, Finnish Meteorological Institute, Helsinki, Finland, 2002.
  43. R. O. Gilbert, Statistical Methods for Environmental Pollution Monitoring, Van Nostrand Reinhold, New York, NY, USA, 1987.
  44. S. Yue and C. Wang, “The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series,” Water Resources Management, vol. 18, no. 3, pp. 201–218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Tabari and P. H. Talaee, “Temporal variability of precipitation over Iran: 1966–2005,” Journal of Hydrology, vol. 396, no. 3-4, pp. 313–320, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. S. del Río, M. Anjum Iqbal, A. Cano-Ortiz, L. Herrero, A. Hassan, and A. Penas, “Recent mean temperature trends in Pakistan and links with teleconnection patterns,” International Journal of Climatology, vol. 33, no. 2, pp. 277–290, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Yenilmez, F. Keskin, and A. Aksoy, “Water quality trend analysis in Eymir Lake, Ankara,” Physics and Chemistry of the Earth, vol. 36, no. 5-6, pp. 135–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Tabari, S. Marofi, A. Aeini, P. H. Talaee, and K. Mohammadi, “Trend analysis of reference evapotranspiration in the western half of Iran,” Agricultural and Forest Meteorology, vol. 151, no. 2, pp. 128–136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Martín Vide and D. Fernández, “El índice NAO y la precipitación mensual en la España peninsular,” Investigaciones Geográficas, vol. 26, pp. 41–58, 2001. View at Google Scholar
  50. J. Sáenz, J. Zubillaga, and C. Rodríguez-Puebla, “Interannual winter temperature variability in the north of the Iberian Peninsula,” Climate Research, vol. 16, no. 3, pp. 169–179, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. J. I. López-Moreno and S. M. Vicente-Serrano, “Atmospheric circulation influence on the interannual variability of snow pack in the Spanish Pyrenees during the second half of the 20th century,” Nordic Hydrology, vol. 38, no. 1, pp. 33–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. S. del Río, A. Cano-Ortiz, L. Herrero, and A. Penas, “Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006),” Theoretical and Applied Climatology, vol. 109, no. 3-4, pp. 605–626, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Sanchez-Lorenzo, M. Brunetti, J. Calbó, and J. Martin-Vide, “Recent spatial and temporal variability and trends of sunshine duration over the Iberian Peninsula from a homogenized data set,” Journal of Geophysical Research D: Atmospheres, vol. 112, no. 20, Article ID D20115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Makowski, E. B. Jaeger, M. Chiacchio, M. Wild, T. Ewen, and A. Ohmura, “On the relationship between diurnal temperature range and surface solar radiation in Europe,” Journal of Geophysical Research D: Atmospheres, vol. 114, no. 7, Article ID D00D07, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Sánchez-Lorenzo, J. Sigró, J. Calbó et al., “Efectos de la nubosidad e insolación en las temperaturas recientes de España,” in Cambio climático regional y sus impactos, J. Sigró, M. Brunet, and E. Aguilar, Eds., vol. A, no. 6, pp. 273–283, Asociación Española de Climatología, 2008. View at Google Scholar
  56. D. Pozo-Vázquez, M. J. Esteban-Parra, F. S. Rodrigo, and Y. Castro-D íez, “A study of NAO variability and its possible non-linear influences on European surface temperature,” Climate Dynamics, vol. 17, no. 9, pp. 701–715, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. M. C. Gallego, R. M. Trigo, J. M. Vaquero et al., “Trends in frequency indices of daily precipitation over the Iberian Peninsula during the last century,” Journal of Geophysical Research D: Atmospheres, vol. 116, no. 2, Article ID D02109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. R. M. Trigo, D. Pozo-Vázquez, T. J. Osborn, Y. Castro-Díez, S. Gámiz-Fortis, and M. J. Esteban-Parra, “North Atlantic Oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula,” International Journal of Climatology, vol. 24, pp. 925–944, 2004. View at Google Scholar
  59. J. Lopez-Bustins, J. Martín-Vide, and A. Sanchez-Lorenzo, “Iberia winter rainfall trends based upon changes in teleconnection and circulation patterns,” Global and Planetary Change, vol. 63, no. 2-3, pp. 171–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. R. M. Trigo and C. DaCamara, “Circulation weather types and their impact on the precipitation regime in Portugal,” International Journal of Climatology, vol. 20, pp. 1559–1581, 2000. View at Google Scholar
  61. S. M. Vicente-Serrano and J. I. López-Moreno, “The influence of atmospheric circulation at different spatial scales on winter drought variability through a semi-arid climatic gradient in Northeast Spain,” International Journal of Climatology, vol. 26, no. 11, pp. 1427–1453, 2006. View at Publisher · View at Google Scholar · View at Scopus