Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 513240, 12 pages
http://dx.doi.org/10.1155/2014/513240
Research Article

Gender Recognition from Unconstrained and Articulated Human Body

1Department of Computer Science, Jiangnan University, Wuxi, Jiangsu 214122, China
2Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA

Received 5 January 2014; Accepted 17 March 2014; Published 7 April 2014

Academic Editors: L. Lin and A. Subasi

Copyright © 2014 Qin Wu and Guodong Guo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Bruce, A. M. Burton, E. Hanna et al., “Sex discrimination: how do we tell the difference between male and female faces?” Perception, vol. 22, no. 2, pp. 131–152, 1993. View at Google Scholar · View at Scopus
  2. M. K. Yamaguchi, T. Hirukawa, and S. Kanazawa, “Judgment of gender through facial parts,” Perception, vol. 24, no. 5, pp. 563–575, 1995. View at Google Scholar · View at Scopus
  3. H. A. Wild, S. E. Barrett, M. J. Spence, A. J. O'Toole, Y. D. Cheng, and J. Brooke, “Recognition and sex categorization of adults' and children's faces: examining performance in the absence of sex-stereotyped cues,” Journal of Experimental Child Psychology, vol. 77, no. 4, pp. 269–291, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski, “Sexnet: a neural network identifies sex from human faces,” in Advances in Neural Information Processing Systems 3, pp. 572–577, Morgan Kaufmann, San Mateo, Calif, USA, 1991. View at Google Scholar
  5. R. Brunelli and T. Poggio, “Hyperbf networks for gender classification,” in Proceedings of the DARPA Image Understanding Workshop, pp. 311–314, 1992.
  6. B. Moghaddam and M.-H. Yang, “Learning gender with support faces,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 5, pp. 707–711, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Baluja and H. A. Rowley, “Boosting sex identification performance,” International Journal of Computer Vision, vol. 71, no. 1, pp. 111–119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Guo, C. R. Dyer, Y. Fu, and T. S. Huang, “Is gender recognition affected by age?” in Proceedings of the IEEE 12th International Conference on Computer Vision Workshops (ICCV '09), pp. 2032–2039, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Cao, M. Dikmen, Y. Fu, and T. S. Huang, “Gender recognition from body,” in Proceedings of the 16th ACM International Conference on Multimedia (MM '08), pp. 725–728, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. G.-D. Guo, G. Mu, and Y. Fu, “Gender from body: a biologically-inspired approach with manifold learning,” in Proceedings of the 9th Asian Conference on Computer Vision, pp. 236–245, September 2009.
  11. M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, “Pedestrian detection using wavelet templates,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 193–199, June 1997. View at Scopus
  12. P. F. Felzenszwalb and D. P. Huttenlocher, “Pictorial structures for object recognition,” International Journal of Computer Vision, vol. 61, no. 1, pp. 55–79, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively trained, multiscale, deformable part model,” in Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition (CVPR '08), June 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Eichner, M. Marin-Jimenez, A. Zisserman, and V. Ferrari, “Articulated human pose estimation and search in (almost) unconstrained still images,” Tech. Rep. 272, ETH Zurich, 2010. View at Google Scholar
  15. C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: interactive foreground extraction using iterated graph cuts,” ACM Transactions on Graphics, vol. 23, no. 3, pp. 309–314, 2004. View at Google Scholar
  16. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '05), pp. 886–893, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Ahonen, A. Hadid, and M. Pietikainen, “Face recognition with local binary patterns,” in Proceedings of the 8th European Conference on Computer Vision, pp. 469–481, 2004.
  18. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons, New York, NY, USA, 1998.
  20. B. V. Dasarathy, Decision Fusion, IEEE Computer Society Press, Washington, DC, USA, 1994.
  21. H. Wold, “Partial least squares,” in Encyclopedia of Statistical Sciences, S. Kotz and N. Johnson, Eds., vol. 6, pp. 581–591, John Wiley & Sons, New York, NY, USA, 1985. View at Google Scholar
  22. R. Rosipal and N. Kramer, “Overview and recent advances in partial least squares,” in Subspace, Latent Structure and Feature Selection Techniques, C. Saunders, M. Grobelnik, S. Gunn, and J. Shawe-Taylor, Eds., pp. 34–51, Springer, 2006. View at Google Scholar
  23. W. Schwartz, A. Kembhavi, D. Harwood, and L. Davis, “Human detection using partial least squares analysis,” in Proceedings of the IEEE 12th International Conference on Computer Vision (ICCV '09), 2009.
  24. W. Schwartz, H. Guo, and L. Davis, “A robust and scalable approach to face identification,” in Proceedings of the 11th European Conference on Computer Vision (ECCV '10), 2010.
  25. G. Guo and G. Mu, “Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '11), pp. 657–664, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Wold, “Path models with latent variables: the nipals approach,” in Quantitative Sociology: Internnational Perspectives on Mathematical and Statistical Model Building, H. M. Blalock, A. Aganbegian, F. M. Borodkin, R. Boudon, and V. Capecchi, Eds., pp. 307–357, Academic Press, 1975. View at Google Scholar
  27. M. Everingham, L. van Gool, C. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes challenge 2008 (voc2008) results,” 2008.
  28. “Buffy Stickmen dataset,” 2009, http://www.robots.ox.ac.uk/~vgg/data/stickmen/.
  29. “PASCAL Stickmen dataset,” 2009, http://www.vision.ee.ethz.ch/~calvin/ethz_pascal_stickmen/.