Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 541802, 11 pages
http://dx.doi.org/10.1155/2014/541802
Research Article

Significance of Normalization on Anatomical MRI Measures in Predicting Alzheimer’s Disease

1Department of Electrical Engineering at the Florida International University, Miami, FL 33174, USA
2Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
3Florida International University, 10555 West Flagler Street, EC 2672, Miami, FL 33174, USA

Received 30 August 2013; Accepted 1 October 2013; Published 6 January 2014

Academic Editors: D. J. Moore and F. Tempia

Copyright © 2014 Qi Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Thies and L. Bleiler, “2012 Alzheimer's disease facts and figures,” Alzheimer's and Dementia, vol. 8, no. 2, pp. 131–168, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Wimo, B. Winblad, and L. Jönsson, “An estimate of the total worldwide societal costs of dementia in 2005,” Alzheimer's and Dementia, vol. 3, no. 2, pp. 81–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. N. C. Fox and J. M. Schott, “Imaging cerebral atrophy: normal ageing to Alzheimer's disease,” The Lancet, vol. 363, no. 9406, pp. 392–394, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. B. H. Ridha, J. Barnes, J. W. Bartlett et al., “Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study,” The Lancet Neurology, vol. 5, no. 10, pp. 828–834, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. P. Laakso, H. Soininen, K. Partanen et al., “Volumes of hippocampus, amygdala and frontal lobes in the MRI-based diagnosis of early Alzheimer's disease: correlation with memory functions,” Journal of Neural Transmission, vol. 9, no. 1, pp. 73–86, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. R. I. Scahill, J. M. Schott, J. M. Stevens, M. N. Rossor, and N. C. Fox, “Mapping the evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 7, pp. 4703–4707, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. L. G. Apostolova, A. E. Green, S. Babakchanian et al., “Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 26, no. 1, pp. 17–27, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Leclerc and A. Abulrob, “Perspectives in molecular imaging using staging biomarkers and immunotherapies in Alzheimer's disease,” Scientific World Journal, vol. 2013, Article ID 589308, 2013. View at Publisher · View at Google Scholar
  9. C.-A. Cuenod, A. Denys, J.-L. Michot et al., “Amygdala atrophy in Alzheimer's disease: an in vivo magnetic resonance imaging study,” Archives of Neurology, vol. 50, no. 9, pp. 941–945, 1993. View at Google Scholar · View at Scopus
  10. S. M. Nestor, R. Rupsingh, M. Borrie et al., “Ventricular enlargement as a possible measure of Alzheimer's disease progression validated using the Alzheimer's disease neuroimaging initiative database,” Brain, vol. 131, no. 9, pp. 2443–2454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. M. Thompson, K. M. Hayashi, G. I. De Zubicaray et al., “Mapping hippocampal and ventricular change in Alzheimer disease,” NeuroImage, vol. 22, no. 4, pp. 1754–1766, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Cuingnet, E. Gerardin, J. Tessieras et al., “Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database,” NeuroImage, vol. 56, no. 2, pp. 766–781, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Ewers, C. Walsh, J. Q. Trojanowski et al., “Prediction of conversion from mild cognitive impairment to Alzheimer's disease dementia based upon biomarkers and neuropsychological test performance,” Neurobiology of Aging, vol. 33, no. 7, pp. 1203–1214, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. Q. Zhou, M. Goryawala, M. Cabrerizo et al., “Combining anatomical biomarkers with neuropsychological data for multidimensional classification of Alzheimer's disease,” in Proceedings of the 17th International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV '13), vol. 1, pp. 255–261, Miami, Fla, USA, July 2013.
  15. E. Westman, C. Aguilar, J. S. Muehlboeck, and A. Simmons, “Regional magnetic resonance imaging measures for multivariate analysis in Alzheimer's disease and mild cognitive impairment,” Brain Topography, vol. 26, pp. 9–23, 2013. View at Google Scholar
  16. M. F. Folstein, S. E. Folstein, and P. R. McHugh, Mini-Mental State: A practical Method for Grading the Cognitive State of Patients for the Clinician, Pergamon Press, 1975.
  17. R. Duara, D. A. Loewenstein, M. Greig et al., “Reliability and validity of an algorithm for the diagnosis of normal cognition, mild cognitive impairment, and Dementia: implications for multicenter research studies,” The American Journal of Geriatric Psychiatry, vol. 18, no. 4, pp. 363–370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. P. A. Fuld, Fuld Object Memory Evaluation, Stoelting, 1982.
  19. G. McKhann, D. Drachman, and M. Folstein, “Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease,” Neurology, vol. 34, no. 7, pp. 939–944, 1984. View at Google Scholar · View at Scopus
  20. D. Zhang, Y. Wang, L. Zhou, H. Yuan, and D. Shen, “Multimodal classification of Alzheimer's disease and mild cognitive impairment,” NeuroImage, vol. 55, no. 3, pp. 856–867, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. J. de Leon, A. E. George, B. Reisberg et al., “Alzheimer's disease: longitudinal CT studies of ventricular change,” The American Journal of Roentgenology, vol. 152, no. 6, pp. 1257–1262, 1989. View at Google Scholar · View at Scopus
  22. S. Klöppel, C. M. Stonnington, C. Chu et al., “Automatic classification of MR scans in Alzheimer's disease,” Brain, vol. 131, no. 3, pp. 681–689, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. López, J. Ramírez, J. M. Górriz et al., “SVM-based CAD system for early detection of the Alzheimer's disease using kernel PCA and LDA,” Neuroscience Letters, vol. 464, no. 3, pp. 233–238, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Magnin, L. Mesrob, S. Kinkingnéhun et al., “Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI,” Neuroradiology, vol. 51, no. 2, pp. 73–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Westman, J. S. Muehlboeck, and A. Simmons, “Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion,” Neuroimage, vol. 62, pp. 229–238, 2012. View at Google Scholar
  26. S. A. R. B. Rombouts, F. Barkhof, M. P. Witter, and P. Scheltens, “Unbiased whole-brain analysis of gray matter loss in Alzheimer's disease,” Neuroscience Letters, vol. 285, no. 3, pp. 231–233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. B. C. Dickerson, E. Feczko, J. C. Augustinack et al., “Differential effects of aging and Alzheimer's disease on medial temporal lobe cortical thickness and surface area,” Neurobiology of Aging, vol. 30, no. 3, pp. 432–440, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Harasty, K. L. Double, G. M. Halliday, J. J. Kril, and D. A. McRitchie, “Language-associated cortical regions are proportionally larger in the female brain,” Archives of Neurology, vol. 54, no. 2, pp. 171–176, 1997. View at Google Scholar · View at Scopus
  29. J. Barnes, G. R. Ridgway, J. Bartlett et al., “Head size, age and gender adjustment in MRI studies: a necessary nuisance?” NeuroImage, vol. 53, no. 4, pp. 1244–1255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. P. Carne, S. Vogrin, L. Litewka, and M. J. Cook, “Cerebral cortex: an MRI-based study of volume and variance with age and sex,” Journal of Clinical Neuroscience, vol. 13, no. 1, pp. 60–72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Hinrichs, V. Singh, G. Xu, and S. C. Johnson, “Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population,” NeuroImage, vol. 55, no. 2, pp. 574–589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. K. B. Walhovd, A. M. Fjell, J. Brewer et al., “Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease,” The American Journal of Neuroradiology, vol. 31, no. 2, pp. 347–354, 2010. View at Publisher · View at Google Scholar · View at Scopus