Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 586921, 6 pages
http://dx.doi.org/10.1155/2014/586921
Research Article

Dynamic Finite Element Analysis of Mobile Bearing Type Knee Prosthesis under Deep Flexional Motion

1Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga 816-8580, Japan
2Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-koen, Kasuga 816-8580, Japan
4Sugioka Memorial Hospital, 3-6-1 Kashiiteriha, Higashi Ward, Fukuoka, Fukuoka Prefecture 813-0017, Japan
5Biomechanics Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Received 14 March 2014; Accepted 22 May 2014; Published 17 July 2014

Academic Editor: Ashvin Thambyah

Copyright © 2014 Mohd Afzan Mohd Anuar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. D. Post, W. Y. Matar, T. van de Leur, E. L. Grossman, and M. S. Austin, “Mobile-bearing total knee arthroplasty. Better than a fixed-bearing?” Journal of Arthroplasty, vol. 25, no. 6, pp. 998–1003, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. W. C. H. Jacobs, B. Christen, A. B. Wymenga et al., “Functional performance of mobile versus fixed bearing total knee prostheses: a randomised controlled trial,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 20, no. 8, pp. 1450–1455, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. G. R. Scuderi, D. R. Hedden, J. A. Maltry, S. M. Traina, M. B. Sheinkop, and M. A. Hartzband, “Early clinical results of a high-flexion, posterior-stabilized, mobile-bearing total knee arthroplasty: a US investigational device exemption trial,” The Journal of Arthroplasty, vol. 27, no. 3, pp. 421–429, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Bhan, R. Malhotra, E. K. Kiran, S. Shukla, and M. Bijjawara, “A comparison of fixed-bearing and mobile-bearing total knee arthroplasty at a minimum follow-up of 4.5 years,” Journal of Bone and Joint Surgery A, vol. 87, no. 10, pp. 2290–2296, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Aglietti, A. Baldini, R. Buzzi, D. Lup, and L. de Luca, “Comparison of mobile-bearing and fixed-bearing total knee arthroplasty: a prospective randomized study,” Journal of Arthroplasty, vol. 20, no. 2, pp. 145–153, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Haider and K. Garvin, “Rotating platform versus fixed-bearing total knees: an in vitro study of wear,” Clinical Orthopaedics and Related Research, vol. 466, no. 11, pp. 2677–2685, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. M. J. McEwen, P. I. Barnett, C. J. Bell et al., “The influence of design, materials and kinematics on the in vitro wear of total knee replacements,” Journal of Biomechanics, vol. 38, no. 2, pp. 357–365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Sharma, R. D. Komistek, C. S. Ranawat, D. A. Dennis, and M. R. Mahfouz, “In vivo contact pressures in total knee arthroplasty,” Journal of Arthroplasty, vol. 22, no. 3, pp. 404–416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Nakayama, S. Matsuda, H. Miura, H. Higaki, K. Otsuka, and Y. Iwamoto, “Contact stress at the post-cam mechanism in posterior-stabilised total knee arthroplasty,” Journal of Bone and Joint Surgery B, vol. 87, no. 4, pp. 483–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A. C. Godest, M. Beaugonin, E. Haug, M. Taylor, and P. J. Gregson, “Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis,” Journal of Biomechanics, vol. 35, no. 2, pp. 267–275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. P. Halloran, A. J. Petrella, and P. J. Rullkoetter, “Explicit finite element modeling of total knee replacement mechanics,” Journal of Biomechanics, vol. 38, no. 2, pp. 323–331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Sathasivam and P. S. Walker, “Computer model to predict subsurface damage in tibial inserts of total knees,” Journal of Orthopaedic Research, vol. 16, no. 5, pp. 564–571, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. N. J. Dahlkvist, P. Mayo, and B. B. Seedhom, “Forces during squatting and rising from a deep squat,” Engineering in Medicine, vol. 11, no. 2, pp. 69–76, 1982. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Nagura, C. O. Dyrby, E. J. Alexander, and T. P. Andriacchi, “Mechanical loads at the knee joint during deep flexion,” Journal of Orthopaedic Research, vol. 20, no. 4, pp. 881–886, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Li, S. Zayontz, L. E. DeFrate, E. Most, J. F. Suggs, and H. E. Rubash, “Kinematics of the knee at high flexion angles: an in vitro investigation,” Journal of Orthopaedic Research, vol. 22, no. 1, pp. 90–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Kanekasu, S. A. Banks, S. Honjo, O. Nakata, and H. Kato, “Fluoroscopic analysis of knee arthroplasty kinematics during deep flexion kneeling,” The Journal of arthroplasty, vol. 19, no. 8, pp. 998–1003, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. G. A. Engh, R. L. Zimmerman, N. L. Parks, and C. A. Engh, “Analysis of wear in retrieved mobile and fixed bearing knee inserts,” Journal of Arthroplasty, vol. 24, no. 6, pp. 28–32, 2009. View at Publisher · View at Google Scholar · View at Scopus