Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 675673, 10 pages
http://dx.doi.org/10.1155/2014/675673
Research Article

Bioconversion of High Concentrations of Hydrogen Sulfide to Elemental Sulfur in Airlift Bioreactor

1Department of Industrial Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
2Department of Occupational Health and Air Pollution, High Institute of Public Health, Alexandria University, 165 El Horreya Avenue, Alexandria, Egypt
3Department of Chemical and Material Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
4Center of Excellence for Environmental Studies, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia

Received 7 May 2014; Revised 4 July 2014; Accepted 4 July 2014; Published 22 July 2014

Academic Editor: Anli Geng

Copyright © 2014 Mohamed Abdel-Monaem Zytoon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Fortuny, J. A. Baeza, X. Gamisans et al., “Biological sweetening of energy gases mimics in biotrickling filters,” Chemosphere, vol. 71, no. 1, pp. 10–17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Ramírez, J. M. Gómez, G. Aroca, and D. Cantero, “Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam,” Bioresource Technology, vol. 100, no. 21, pp. 4989–4995, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. Kim, E. R. Rene, and H. S. Park, “Biological oxidation of hydrogen sulfide under steady and transient state conditions in an immobilized cell biofilter,” Bioresource Technology, vol. 99, no. 3, pp. 583–588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Oyarzún, F. Arancibia, C. Canales, and G. E. Aroca, “Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus,” Process Biochemistry, vol. 39, no. 2, pp. 165–170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Potivichayanon, P. Pokethitiyook, and M. Kruatrachue, “Hydrogen sulfide removal by a novel fixed-film bioscrubber system,” Process Biochemistry, vol. 41, no. 3, pp. 708–715, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. L. R. P. Filho, L. T. Sader, M. H. R. Z. Damianovic, E. Foresti, and E. L. Silva, “Performance evaluation of packing materials in the removal of hydrogen sulphide in gas-phase biofilters: polyurethane foam, sugarcane bagasse, and coconut fibre,” Chemical Engineering Journal, vol. 158, no. 3, pp. 441–450, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Park, D. S. Lee, J. Y. Joung, and J. M. Park, “Comparison of different bioreactor systems for indirect H2S removal using iron-oxidizing bacteria,” Process Biochemistry, vol. 40, no. 3-4, pp. 1461–1467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. C. Chung, C. Huang, and C.-P. Tseng, “Microbial oxidation of hydrogen sulfide with biofilter,” Journal of Environmental Science and Health, vol. 31, no. 6, pp. 1263–1278, 1996. View at Google Scholar · View at Scopus
  9. Y. Yang and E. R. Allen, “Biofiltration control of hydrogen sulfide: 1. Design and operational parameters,” Journal of the Air & Waste Management Association, vol. 44, no. 7, pp. 863–868, 1994. View at Google Scholar · View at Scopus
  10. A. H. Wani, A. K. Lau, and R. M. R. Barnion, “Biofiltration control of pulping odors- hydrogen sulfide: performance, macrokinetics and coexistence effects of organo-sulfur species,” Journal of Chemical Technology and Biotechnology, vol. 74, pp. 9–16, 1999. View at Google Scholar
  11. Y. Yang and E. R. Allen, “Biofiltration control of hydrogen sulfide: 2. Kinetics, biofilter performance, and maintenance,” Journal of the Air and Waste Management Association, vol. 44, no. 11, pp. 1315–1321, 1994. View at Google Scholar · View at Scopus
  12. K. Kim, W. Chung, and Y. Oh, “Dynamic behavior of compost biofilters during periods of starvation and fluctuating hydrogen sulfide loadings,” Journal of Environmental Science and Health, vol. 39, no. 1, pp. 299–307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. C. Chung and C. Huang, “Removal of hydrogen sulphide by immobilized Thiobacillus sp. strain CH11 in a biofilter,” Journal of Chemical Technology and Biotechnology, vol. 69, no. 1, pp. 58–62, 1997. View at Publisher · View at Google Scholar
  14. D. Gabriel and M. A. Deshusses, “Performance of a full-scale biotrickling filter treating H2S at a gas contact time of 1.6 to 2.2 seconds,” Environmental Progress, vol. 22, no. 2, pp. 111–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Kim and M. A. Deshusses, “Development and experimental validation of a conceptual model for biotrickling filtration of H2S,” Environmental Progress, vol. 22, no. 2, pp. 119–128, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. D. H. Park, J. M. Cha, H. W. Ryu et al., “Hydrogen sulfide removal utilizing immobilized Thiobacillus sp. IW with Ca-alginate bead,” Biochemical Engineering Journal, vol. 11, no. 2-3, pp. 167–173, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Shinabe, S. Oketani, T. Ochi, S. Kanchanatawee, and M. Matsumura, “Characteristics of hydrogen sulfide removal in a carrier-packed biological deodorization system,” Biochemical Engineering Journal, vol. 5, no. 3, pp. 209–217, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Duan, R. Yan, L. C. C. Koe, and X. Wang, “Combined effect of adsorption and biodegradation of biological activated carbon on H2S biotrickling filtration,” Chemosphere, vol. 66, no. 9, pp. 1684–1691, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Duan, L. C. C. Koe, R. Yan, and X. Chen, “Biological treatment of H2S using pellet activated carbon as a carrier of microorganisms in a biofilter,” Water Research, vol. 40, no. 14, pp. 2629–2636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Cho, M. Hirai, and M. Shoda, “Degradation of hydrogen sulfide by Xanthomonas sp. strain DY44 isolated from peat,” Applied and Environmental Microbiology, vol. 58, no. 4, pp. 1183–1189, 1992. View at Google Scholar · View at Scopus
  21. H. S. J. Yoshizawa and S. Kametani, “Bacteria help desulfurize gas,” Hydrocarbon Processing, vol. 67, pp. 76D–76F, 1988. View at Google Scholar
  22. S. Ebrahimi, F. J. F. Morales, R. Kleerebezem, J. J. Heijnen, and M. C. M. van Loosdrecht, “High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material,” Biotechnology and Bioengineering, vol. 90, no. 4, pp. 462–472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Son and J. Lee, “H2S removal with an immobilized cell hybrid reactor,” Process Biochemistry, vol. 40, no. 6, pp. 2197–2203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Pagella and D. M. De Faveri, “H2S gas treatment by iron bioprocess,” Chemical Engineering Science, vol. 55, no. 12, pp. 2185–2194, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Rattanapan, P. Boonsawang, and D. Kantachote, “Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater,” Bioresource Technology, vol. 100, no. 1, pp. 125–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Fernández, M. Ramírez, J. M. Gómez, and D. Cantero, “Biogas biodesulfurization in an anoxic biotrickling filter packed with open-pore polyurethane foam,” Journal of Hazardous Materials, vol. 264, pp. 529–535, 2014. View at Google Scholar
  27. G. Rodriguez, A. D. Dorado, M. Fortuny, D. Gabriel, and X. Gamisans, “Biotrickling filters for biogas sweetening: oxygen transfer improvement for a reliable operation,” Process Safety and Environmental Protection, vol. 92, no. 3, pp. 261–268, 2014. View at Publisher · View at Google Scholar · View at Scopus
  28. C. J. N. Buisman, B. G. Geraats, P. IJspeert, and G. Lettinga, “Optimization of sulphur production in a biotechnological sulphide-removing reactor,” Biotechnology and Bioengineering, vol. 35, no. 1, pp. 50–56, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Lohwacharin and A. P. Annachhatre, “Biological sulfide oxidation in an airlift bioreactor,” Bioresource Technology, vol. 101, no. 7, pp. 2114–2120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A. J. H. Janssen, S. C. Ma, P. Lens, and G. Lettinga, “Performance of a sulfide-oxidizing expanded-bed reactor supplied with dissolved oxygen,” Biotechnology and Bioengineering, vol. 53, pp. 32–40, 1997. View at Google Scholar
  31. A. J. H. Janssen, G. Lettinga, and A. de Keizer, “Removal of hydrogen sulphide from wastewater and waste gases by biological conversion to elemental sulphur: colloidal and interfacial aspects of biologically produced sulphur particles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 151, no. 1-2, pp. 389–397, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Krishnakumar, S. Majumdar, V. B. Manilal, and A. Haridas, “Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR),” Water Research, vol. 39, no. 4, pp. 639–647, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. American Public Health Association (APHA), Standard Methods for the Examination of Water & Wastewater, APHA, Washington, DC, USA, 21st edition, 2005.
  34. H. Satake, T. Hisano, and S. Ikeda, “The rapid determination of sulfide, thiosulfate, and polysulfide in the lixiviation water of blast-furnace slag by means of argentometric potentiometric titration,” Bulletin of the Chemical Society of Japan, vol. 54, pp. 1968–1971, 1981. View at Google Scholar
  35. G. M. M. Moghanloo, E. Fatehifar, S. Saedy, Z. Aghaeifa, and H. Abbasnezhad, “Biological oxidation of hydrogen sulfide in mineral media using a biofilm airlift suspension reactor,” Bioresource Technology, vol. 101, no. 21, pp. 8330–8335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. P. F. Henshaw and W. Zhu, “Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor,” Water Research, vol. 35, no. 15, pp. 3605–3610, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Vannini, G. Munz, G. Mori, C. Lubello, F. Verni, and G. Petroni, “Sulphide oxidation to elemental sulphur in a membrane bioreactor: performance and characterization of the selected microbial sulphur-oxidizing community,” Systematic and Applied Microbiology, vol. 31, no. 6–8, pp. 461–473, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. A. J. H. Janssen, S. Meijer, J. Botsema, and G. Lettinga, “Application of the redox potential for controlling a sulfide oxidating bioreactor,” Biotechnology and Bioengineering, vol. 60, pp. 147–155, 1998. View at Google Scholar
  39. A. D. Levine, B. J. Raymer, and J. Jahn, “Evaluation of biological hydrogen sulfide oxidation coupled with two-stage upflow filtration for groundwater treatment,” Journal of Environmental Science and Health A, vol. 39, no. 5, pp. 1263–1279, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. P. F. Henshaw, J. K. Bewtra, and N. Biswas, “Hydrogen sulphide conversion to elemental sulphur in a suspended-growth continuous stirred tank reactor using Chlorobium limicola,” Water Research, vol. 32, no. 6, pp. 1769–1778, 1998. View at Publisher · View at Google Scholar · View at Scopus
  41. A. J. H. Janssen, R. Sleyster, C. van der Kaa, A. Jochemsen, J. Bontsema, and G. Lettinga, “Biological sulphide oxidation in a fed-batch reactor,” Biotechnology and Bioengineering, vol. 47, no. 3, pp. 327–333, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. R. H. Arnston, F. W. Dickson, and G. Tunell, “Systems S-Na2O-H2O and S-H2O: application to the mode of origin of natural alkaline polysulfide and thiosulfate solutions,” American Journal of Science, vol. 8, pp. 574–582, 1960. View at Google Scholar
  43. S. A. Khan, “UV-ATR spectroscopy study of the speciation in aqueous polysulfide electrolyte solutions,” International Journal of Electrochemical Science, vol. 7, no. 1, pp. 561–568, 2012. View at Google Scholar · View at Scopus
  44. L. W. H. Pol, P. N. L. Lens, A. J. M. Stams, and G. Lettinga, “Anaerobic treatment of sulphate-rich wastewaters,” Biodegradation, vol. 9, no. 3-4, pp. 213–224, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. W. E. Kleinjan, A. de Keizer, and A. J. H. Janssen, “Equilibrium of the reaction between dissolved sodium sulfide and biologically produced sulfur,” Colloids and Surfaces B: Biointerfaces, vol. 43, no. 3-4, pp. 228–237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Isa, S. Grusenmeyer, and W. Vestraete, “Sulfate reduction relative to methane production in high-rate anaerobic digestion: technical aspects,” Applied and Environmental Microbiology, vol. 51, no. 3, pp. 572–579, 1986. View at Google Scholar · View at Scopus