Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 690752, 10 pages
Research Article

Cholesterol-Lowering Potentials of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism In Vitro and In Vivo

1Department of Food Science and Technology, Hungkuang University, No. 1018, Section 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan
2Graduate Institute of Clinical Medical Science, China Medical University, Taichung City 40402, Taiwan
3Department of Food and Nutrition, Providence University, Taichung City 43301, Taiwan

Received 17 May 2014; Accepted 19 September 2014; Published 3 November 2014

Academic Editor: Virender Kumar Batish

Copyright © 2014 Cheng-Chih Tsai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probiotics in vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG) and apolipoprotein B (apo B) secretion by HepG2 cells were evaluated. Our results show that the BSH activity and bile-acid deconjugation abilities of Pediococcus acidilactici NBHK002, Bifidobacterium adolescentis NBHK006, Lactobacillus rhamnosus NBHK007, and Lactobacillus acidophilus NBHK008 were higher than those of the other probiotic strains. The cholesterol concentration in cholesterol micelles was reduced within 24 h. NBHK007 reduced the TG secretion by 100% after 48 h of incubation. NBHK002, NBHK006, and NBHK007 could reduce apo B secretion by 33%, 38%, and 39%, respectively, after 24 h of incubation. The product PROBIO S-23 produced a greater decrease in the total concentration of cholesterol, low-density lipoprotein, TG, and thiobarbituric acid reactive substance in the serum or livers of hamsters with hypercholesterolemia compared with that of hamsters fed with a high-fat and high-cholesterol diet. These results show that the three probiotic strains of lactic acid bacteria are better candidates for reducing the risk of cardiovascular disease.