Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 704708, 9 pages
http://dx.doi.org/10.1155/2014/704708
Research Article

Production of Silver Nanoparticles with Strong and Stable Antimicrobial Activity against Highly Pathogenic and Multidrug Resistant Bacteria

1Strategic Center for Diabetes Research, King Saud University, P.O. Box 18397, Riyadh 11415, Saudi Arabia
2The National Nanotechnology Center, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
3University Diabetes Center, King Saud University, P.O. Box 18397, Riyadh 11415, Saudi Arabia

Received 12 March 2014; Revised 1 June 2014; Accepted 1 June 2014; Published 30 June 2014

Academic Editor: Kalimuthu Kalishwaralal

Copyright © 2014 Amr T. M. Saeb et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Jiang, K.-S. Moon, Z. Zhang, S. Pothukuchi, and C. P. Wong, “Variable frequency microwave synthesis of silver nanoparticles,” Journal of Nanoparticle Research, vol. 8, no. 1, pp. 117–124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Durán, P. D. Marcato, G. I. H. De Souza, O. L. Alves, and E. Esposito, “Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment,” Journal of Biomedical Nanotechnology, vol. 3, no. 2, pp. 203–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: green synthesis and their antimicrobial activities,” Advances in Colloid and Interface Science, vol. 145, no. 1-2, pp. 83–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Kalishwaralal, S. BarathManiKanth, S. R. K. Pandian, V. Deepak, and S. Gurunathan, “Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis,” Colloids and Surfaces B: Biointerfaces, vol. 79, no. 2, pp. 340–344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Panáček, M. Kolář, R. Večeřová et al., “Antifungal activity of silver nanoparticles against Candida spp,” Biomaterials, vol. 30, no. 31, pp. 6333–6340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Sastry, A. Ahmad, M. Islam Khan, and R. Kumar, “Biosynthesis of metal nanoparticles using fungi and actinomycete,” Current Science, vol. 85, no. 2, pp. 162–170, 2003. View at Google Scholar · View at Scopus
  7. P. Mohanpuria, N. K. Rana, and S. K. Yadav, “Biosynthesis of nanoparticles: technological concepts and future applications,” Journal of Nanoparticle Research, vol. 10, no. 3, pp. 507–517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Gong, H. Li, X. He et al., “Preparation and antibacterial activity of Fe3O4@Ag nanoparticles,” Nanotechnology, vol. 18, no. 28, Article ID 285604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. L. Cushing, V. L. Kolesnichenko, and C. J. O'Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles,” Chemical Reviews, vol. 104, no. 9, pp. 3893–3946, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. V. ThirumalaiArasu, D. Prabhu, and M. Soniya, “Stable silver nanoparticles synthesizing methods and its applications,” Journal of Bioscience Research, vol. 1, pp. 259–270, 2010. View at Google Scholar
  11. V.-S. Mǎnoiu and A. Aloman, “Obtaining silver nanoparticles by sonochemical methods,” UPB Scientific Bulletin B: Chemistry and Materials Science, vol. 72, no. 2, pp. 179–186, 2010. View at Google Scholar · View at Scopus
  12. V.-S. Mǎnoiu and A. Aloman, “Obtaining silver nanoparticles by sonochemical methods,” UPB Scientific Bulletin B: Chemistry and Materials Science, vol. 72, no. 2, pp. 179–186, 2010. View at Google Scholar · View at Scopus
  13. M. Starowicz, B. Stypuła, and J. Banaś, “Electrochemical synthesis of silver nanoparticles,” Electrochemistry Communications, vol. 8, no. 2, pp. 227–230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Manual, S. K. Arumugam, R. Pasricha, and M. Sastry, “Silver nanoparticles of variable morphology synthesized in aqueous foams as novel templates,” Bulletin of Materials Science, vol. 28, no. 5, pp. 503–510, 2005. View at Google Scholar · View at Scopus
  15. B. M. Sergeev, V. A. Kasaikin, E. A. Litmanovich, G. B. Sergeev, and A. N. Prusov, “Cryochemical synthesis and properties of silver nanoparticle dispersions stabilised by poly(2-dimethylaminoethyl methacrylate),” Mendeleev Communications, vol. 9, no. 4, pp. 130–132, 1999. View at Google Scholar · View at Scopus
  16. Y. Junejo and A. Sirajuddin, “Green chemical synthesis of silver nanoparticles and its catalytic activity,” Journal of Inorganic and Organometallic Polymers and Materials, vol. 24, pp. 401–406, 2014. View at Publisher · View at Google Scholar
  17. T. Klaus, R. Joerger, E. Olsson, and C.-G. Granqvist, “Silver-based crystalline nanoparticles, microbially fabricated,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 13611–13614, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Nair and T. Pradeep, “Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains,” Crystal Growth and Design, vol. 2, no. 4, pp. 293–298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. J. K. Fu, W. D. Zhang, Y. Y. Liu, Z. Y. Lin, B. X. Yao, and S. Z. Weng, “Characterization of adsorption and reduction of noble metal ions by bacteria,” Chemical Journal of Chinese Universities, vol. 20, pp. 1452–1454, 1999. View at Google Scholar
  20. A. R. Shahverdi, S. Minaeian, H. R. Shahverdi, H. Jamalifar, and A.-A. Nohi, “Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach,” Process Biochemistry, vol. 42, no. 5, pp. 919–923, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Kalimuthu, R. Suresh Babu, D. Venkataraman, M. Bilal, and S. Gurunathan, “Biosynthesis of silver nanocrystals by Bacillus licheniformis,” Colloids and Surfaces B: Biointerfaces, vol. 65, no. 1, pp. 150–153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Zhang, Q. Li, Y. Lu et al., “Biosorption and bioreduction of diamine silver complex by Corynebacterium,” Journal of Chemical Technology and Biotechnology, vol. 80, no. 3, pp. 285–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Gurunathan, K.-J. Lee, K. Kalishwaralal, S. Sheikpranbabu, R. Vaidyanathan, and S. H. Eom, “Antiangiogenic properties of silver nanoparticles,” Biomaterials, vol. 30, no. 31, pp. 6341–6350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Gurunathan, K. Kalishwaralal, R. Vaidyanathan et al., “Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli,” Colloids and Surfaces B: Biointerfaces, vol. 74, no. 1, pp. 328–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Samadi, D. Golkaran, A. Eslamifar, H. Jamalifar, M. R. Fazeli, and F. A. Mohseni, “Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste,” Journal of Biomedical Nanotechnology, vol. 5, no. 3, pp. 247–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Pugazhenthiran, S. Anandan, G. Kathiravan, N. K. Udaya Prakash, S. Crawford, and M. Ashokkumar, “Microbial synthesis of silver nanoparticles by Bacillus sp,” Journal of Nanoparticle Research, vol. 11, no. 7, pp. 1811–1815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Nanda and M. Saravanan, “Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 5, no. 4, pp. 452–456, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. C. G. Kumar and S. K. Mamidyala, “Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa,” Colloids and Surfaces B: Biointerfaces, vol. 84, no. 2, pp. 462–466, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. E. P. Abraham, E. Chain, C. M. Fletcher et al., “Further observations on penicillin,” The Lancet, vol. 238, no. 6155, pp. 177–189, 1941. View at Google Scholar · View at Scopus
  30. P. Usha Rani and P. Rajasekharreddy, “Green synthesis of silver-protein (core-shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 389, no. 1–3, pp. 188–194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews, vol. 104, no. 1, pp. 293–346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Katz and I. Willner, “Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications,” Angewandte Chemie International Edition, vol. 43, no. 45, pp. 6042–6108, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir, vol. 12, no. 3, pp. 788–800, 1996. View at Google Scholar · View at Scopus
  34. M. Sastry, V. Patil, and S. R. Sainkar, “Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films,” Journal of Physical Chemistry B, vol. 102, no. 8, pp. 1404–1410, 1998. View at Google Scholar · View at Scopus
  35. A. Henglein, “Physicochemical properties of small metal particles in solution: “Microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition,” Journal of Physical Chemistry, vol. 97, no. 21, pp. 5457–5471, 1993. View at Google Scholar · View at Scopus
  36. L. M. Liz-Marzán and I. Lado-Touriño, “Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants,” Langmuir, vol. 12, no. 15, pp. 3585–3589, 1996. View at Google Scholar · View at Scopus
  37. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” Journal of Physical Chemistry B, vol. 107, no. 3, pp. 668–677, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. F. Meléndrez, G. Cárdenas, and J. Arbiol, “Synthesis and characterization of gallium colloidal nanoparticles,” Journal of Colloid and Interface Science, vol. 346, no. 2, pp. 279–287, 2010. View at Publisher · View at Google Scholar · View at Scopus