Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 713490, 15 pages
http://dx.doi.org/10.1155/2014/713490
Research Article

A Particle Swarm Optimization Variant with an Inner Variable Learning Strategy

1Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha, Hunan 410073, China
2Department of Electrical & Computer Engineering, University of Alberta, Edmonton, AB, Canada T6R 2V4
3Warsaw School of Information Technology, Newelska, 01-447 Warsaw, Poland
4Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
5School of Civil Engineering and Architecture, Central South University, Changsha , Hunan 410004, China

Received 27 August 2013; Accepted 10 October 2013; Published 23 January 2014

Academic Editors: Y. Deng and Y. Zhao

Copyright © 2014 Guohua Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, December 1995. View at Scopus
  2. R. Eberhart and J. Kennedy, “New optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science, pp. 39–43, October 1995. View at Scopus
  3. R. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence, Morgan Kaufmann, 2001.
  4. Z.-H. Zhan, J. Zhang, Y. Li, and Y.-H. Shi, “Orthogonal learning particle swarm optimization,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 6, pp. 832–847, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Eberhart and Y. Shi, “Comparison between genetic algorithms and particle swarm optimization,” in Evolutionary Programming VII, pp. 611–616, 1998. View at Google Scholar
  6. Y. Shi and R. Eberhart, “Parameter selection in particle swarm optimization,” in Evolutionary Programming VII, pp. 591–600, 1998. View at Google Scholar
  7. A. Chatterjee and P. Siarry, “Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization,” Computers & Operations Research, vol. 33, no. 3, pp. 859–871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 240–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Shi and R. C. Eberhart, “Fuzzy adaptive particle swarm optimization,” in Proceedings of the Congress on Evolutionary Computation, pp. 101–106, May 2001. View at Scopus
  10. A. Ismail and A. Engelbrecht, “The self-adaptive comprehensive learning particle swarm optimizer,” Swarm Intelligence, pp. 156–167, 2012. View at Google Scholar
  11. K. E. Parsopoulos and M. N. Vrahatis, “Parameter selection and adaptation in unified particle swarm optimization,” Mathematical and Computer Modelling, vol. 46, no. 1-2, pp. 198–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Kennedy, “Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance,” in Proceedings of the Congress on Evolutionary Computation, 1999.
  13. P. N. Suganthan, “Particle swarm optimiser with neighbourhood operator,” Proceedings of the Congress on Evolutionary Computation, 1999.
  14. X. Hu and R. Eberhart, “Multiobjective optimization using dynamic neighborhood particle swarm optimization,” in Proceedings of the Congress on Evolutionary Computation, pp. 1677–1681, 2002.
  15. J. J. Liang and P. N. Suganthan, “Dynamic multi-swarm particle swarm optimizer,” in Proceedings of the IEEE Swarm Intelligence Symposium (SIS '05), pp. 124–129, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Kennedy and R. Mendes, “Population structure and particle swarm performance,” in Proceedings of the Congress on Evolutionary Computation, pp. 1671–1676, 2002.
  17. Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive particle swarm optimization,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 39, no. 6, pp. 1362–1381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Hu, T. Wu, and J. D. Weir, “An intelligent augmentation of particle swarm optimization with multiple adaptive methods,” Information Sciences, vol. 213, pp. 68–83, 2012. View at Publisher · View at Google Scholar
  19. C. Li, S. Yang, and T. T. Nguyen, “A self-learning particle swarm optimizer for global optimization problems,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 42, pp. 627–646, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Angeline, “Evolutionary optimization versus particle swarm optimization: philosophy and performance differences,” in Evolutionary Programming VII, pp. 601–610, 1998. View at Google Scholar
  21. C. Wei, Z. He, Y. Zhang, and W. Pei, “Swarm directions embedded in fast evolutionary programming,” in Proceedings of the Congress on Evolutionary Computation, pp. 1278–1283, 2002.
  22. X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–102, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Poli, C. Di Chio, and W. B. Langdon, “Exploring extended particle swarms: a genetic programming approach,” in Proceedings of the Conference on Genetic and Evolutionary Computation, pp. 169–176, June 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, and Q. Tian, “Self-adaptive learning based particle swarm optimization,” Information Sciences, vol. 181, no. 20, pp. 4515–4538, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. L.-N. Xing, Y.-W. Chen, P. Wang, Q.-S. Zhao, and J. Xiong, “A knowledge-based ant colony optimization for flexible job shop scheduling problems,” Applied Soft Computing Journal, vol. 10, no. 3, pp. 888–896, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Wu, J. Liu, M. Ma, and D. Qiu, “A two-phase scheduling method with the consideration of task clustering for earth observing satellites,” Computers & Operations Research, vol. 40, pp. 1884–1894, 2013. View at Google Scholar
  27. G. Wu, M. Ma, J. Zhu, and D. Qiu, “Multi-satellite observation integrated scheduling method oriented to emergency tasks and common tasks,” Journal of Systems Engineering and Electronics, vol. 23, pp. 723–733, 2012. View at Google Scholar
  28. H. Li and B. Wu, “Adaptive geo-information processing service evolution: reuse and local modification method,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 83, pp. 165–183, 2013. View at Publisher · View at Google Scholar
  29. H. Li, Q. Zhu, X. Yang, and L. Xu, “Geo-information processing service composition for concurrent tasks: a QoS-aware game theory approach,” Computers & Geosciences, vol. 42, pp. 46–59, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Wu, W. Pedrycz, H. Li, D. Qiu, M. Ma, and J. Liu, “Complexity reduction in the use of evolutionary algorithms to function optimization: a variable reduction strategy,” The Scientific World Journal, vol. 2013, Article ID 172193, 8 pages, 2013. View at Publisher · View at Google Scholar
  31. Y. Shi and R. Eberhart, “Modified particle swarm optimizer,” in Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC '98), pp. 69–73, May 1998. View at Scopus
  32. M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in a multidimensional complex space,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle swarm: simpler, maybe better,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 204–210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to participle swam optimization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 225–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 3, pp. 281–295, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Banks, J. Vincent, and C. Anyakoha, “A review of particle swarm optimization—part I: background and development,” Natural Computing, vol. 6, no. 4, pp. 467–484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Banks, J. Vincent, and C. Anyakoha, “A review of particle swarm optimization—part II: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications,” Natural Computing, vol. 7, no. 1, pp. 109–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,” Swarm Intelligence, vol. 1, pp. 33–57, 2007. View at Google Scholar
  39. Y. del Valle, G. K. Venayagamoorthy, S. Mohagheghi, J.-C. Hernandez, and R. G. Harley, “Particle swarm optimization: basic concepts, variants and applications in power systems,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 2, pp. 171–195, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Rana, S. Jasola, and R. Kumar, “A review on particle swarm optimization algorithms and their applications to data clustering,” Artificial Intelligence Review, vol. 35, no. 3, pp. 211–222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. D. W. Boeringer and D. H. Werner, “Particle swarm optimization versus genetic algorithms for phased array synthesis,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 3, pp. 771–779, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in Proceedings of the Congress on Evolutionary Computation, 1999.
  43. J. Kennedy, “Particle swarm: social adaptation of knowledge,” in Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC '97), pp. 303–308, April 1997. View at Scopus
  44. C.-F. Juang, “A hybrid of genetic algorithm and particle swarm optimization for recurrent network design,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 34, no. 2, pp. 997–1006, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. Y.-P. Chen, W.-C. Peng, and M.-C. Jian, “Particle swarm optimization with recombination and dynamic linkage discovery,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 37, no. 6, pp. 1460–1470, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. P. S. Andrews, “An investigation into mutation operators for particle swarm optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '06), pp. 1044–1051, July 2006. View at Scopus
  47. W.-J. Zhang and X.-F. Xie, “DEPSO: hybrid particle swarm with differential evolution operator,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 3816–3821, October 2003. View at Scopus
  48. M. G. H. Omran, A. P. Engelbrecht, and A. Salman, “Differential evolution based particle swarm optimization,” in Proceedings of the IEEE Swarm Intelligence Symposium (SIS '07), pp. 112–119, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Wang, Z. Wu, S. Rahnamayan, Y. Liu, and M. Ventresca, “Enhancing particle swarm optimization using generalized opposition-based learning,” Information Sciences, vol. 181, no. 20, pp. 4699–4714, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. P. N. Suganthan, N. Hansen, J. J. Liang et al., Problem Definitions and Evaluation Criteria for the CEC, 2005 Special Session on Real-Parameter Optimization, Nanyang Technological University, Singapore, 2005.
  51. C.-Y. Chen, K.-C. Chang, and S.-H. Ho, “Improved framework for particle swarm optimization: swarm intelligence with diversity-guided random walking,” Expert Systems with Applications, vol. 38, no. 10, pp. 12214–12220, 2011. View at Publisher · View at Google Scholar · View at Scopus