Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 720157, 9 pages
Research Article

Characterization of the Polycaprolactone Melt Crystallization: Complementary Optical Microscopy, DSC, and AFM Studies

1Department of Industrial Engineering (DIIN), University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
2Institute for Composite and Biomedical Materials (IMCB), National Research Council (CNR), Piazzale Enrico Fermi 1, 80055 Portici, Italy

Received 28 August 2013; Accepted 8 October 2013; Published 9 January 2014

Academic Editors: V. Amigó, P. Reis, and S. Wu

Copyright © 2014 V. Speranza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The first stages of the crystallization of polycaprolactone (PCL) were studied using several techniques. The crystallization exotherms measured by differential scanning calorimetry (DSC) were analyzed and compared with results obtained by polarized optical microscopy (POM), rheology, and atomic force microscope (AFM). The experimental results suggest a strong influence of the observation scale. In particular, the AFM, even if limited on time scale, appears to be the most sensitive technique to detect the first stages of crystallization. On the contrary, at least in the case analysed in this work, rheology appears to be the least sensitive technique. DSC and POM provide closer results. This suggests that the definition of induction time in the polymer crystallization is a vague concept that, in any case, requires the definition of the technique used for its characterization.