Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 785305, 14 pages
http://dx.doi.org/10.1155/2014/785305
Research Article

An Energy Efficient Simultaneous-Node Repositioning Algorithm for Mobile Sensor Networks

1Department of Computer and Information Sciences, Universiti Teknologi Petronas, 31750 Tronoh, Perak, Malaysia
2Department of Electrical Engineering, COMSATS Institute of Information Technology, University Road, Tobe Campus, Abbottabad 22060, Pakistan
3Computer Science Department, COMSATS Institute of Information Technology, University Road, Tobe Campus, Abbottabad 22060, Pakistan

Received 27 December 2013; Accepted 19 February 2014; Published 23 July 2014

Academic Editors: H. R. Karimi, X. Yang, Z. Yu, and W. Zhang

Copyright © 2014 Muhammad Amir Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Ranga, M. Dave, and A. K. Verma, “Network partitioning recovery mechanisms in WSANs: a survey,” Wireless Personal Communications, vol. 72, no. 2, pp. 857–917, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Nazir, H. Hasbullah, and S. A. Madani, “Sleep/wake scheduling scheme for minimizing end-to-end delay in multi-hop wireless sensor networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2011, article 92, 14 pages, 2011. View at Publisher · View at Google Scholar
  3. H. Salarian, K.-W. Chin, and F. Naghdy, “Coordination in wireless sensor-actuator networks: a survey,” Journal of Parallel and Distributed Computing, vol. 72, no. 7, pp. 856–867, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Nazir and H. Hasbullah, “Energy efficient and QoS aware routing protocol for clustered wireless sensor network,” Computers and Electrical Engineering, vol. 39, pp. 2425–2441, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Nazir and H. Hasbullah, “Energy balanced clustering in wireless sensor network,” in Proceedings of the International Symposium on Information Technology (ITSim '10), pp. 569–574, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Jun, W. Zhao, M. H. Ammar, E. W. Zegura, and C. Lee, “Trading latency for energy in densely deployed wireless ad hoc networks using message ferrying,” Ad Hoc Networks, vol. 5, no. 4, pp. 444–461, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Chu, H. Haussecker, and F. Zhao, “Scalable information-driven sensor querying and routing for ad hoc heterogeneous sensor networks,” International Journal of High Performance Computing Applications, vol. 16, no. 3, pp. 293–313, 2002. View at Google Scholar · View at Scopus
  8. J. Chen, M. Díaz, L. Llopis, B. Rubio, and J. M. Troya, “A survey on quality of service support in wireless sensor and actor networks: requirements and challenges in the context of critical infrastructure protection,” Journal of Network and Computer Applications, vol. 34, no. 4, pp. 1225–1239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Hasbullah and B. Nazir, “Region-based energy-aware cluster (REC) for efficient packet forwarding in WSN,” in Proceedings of the International Symposium on Information Technology (ITSim '10), pp. 1–6, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Younis, P. Munshi, and E. Al-Shaer, “Architecture for efficient monitoring and management of sensor networks,” in Proceedings of the IFIP/IEEE Workshop on End-to-End Monitoring Techniques and Services (E2EMON '03), pp. 140–146, Belfast, Northern Ireland, September 2003.
  11. W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 660–670, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K. K. Saluja, “Sensor deployment strategy for target detection,” in Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, pp. 42–48, September 2002. View at Scopus
  13. G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” Communications of the ACM, vol. 43, no. 5, pp. 51–58, 2000. View at Google Scholar · View at Scopus
  14. K. Akkaya and M. Younis, “COLA: a coverage and latency aware actor placement for wireless sensor and actor networks,” in Proceedings of the IEEE 64th Vehicular Technology Conference (VTC '06), pp. 2649–2653, Montreal, Canada, September 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Melodia, D. Pompili, V. C. Gungor, and I. F. Akyildiz, “A distributed coordination framework for wireless sensor and actor networks,” in Proceedings of the 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC '05), pp. 99–110, Urbana-Champaign, Ill, USA, May 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Bai, Z. Yun, D. Xuan, T. H. Lai, and W. Jia, “Optimal patterns for four-connectivity and full coverage in wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 9, no. 3, pp. 435–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Akkaya, M. Younis, and M. Bangad, “Sink repositioning for enhanced performance in wireless sensor networks,” Computer Networks, vol. 49, no. 4, pp. 512–534, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Liu, L. Xiao, A. Kreling, and Y. Liu, “Optimizing overlay topology by reducing cut vertices,” in Proceedings of the 16th Annual International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV '06), pp. 112–119, Newport, RI, USA, May 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. S. Dhillon and K. Chakrabarty, “Sensor placement for effective coverage and surveillance in distributed sensor networks,” in Proceedings of the IEEE Wireless Communications and Networking Conference, pp. 1609–1614, 2003.
  20. M. A. Khan, H. Hasbullah, B. Nazir, I. A. Qureshi, and N. Pirzada, “Simultaneously node relocation algorithm for mobile sensor network,” in Wireless Sensor Networks for Developing Countries, vol. 366 of Communications in Computer and Information Science, pp. 85–95, Springer, 2013. View at Publisher · View at Google Scholar
  21. A. Howard, M. J. Mataric, and G. S. Sukhatme, “Mobile sensor network deployment using potential fields: a distributed, scalable solution to the area coverage problem,” in Proceedings of the 6th International Symposium on Distributed Autonomous Robotic Systems, pp. 299–308, Fukuoka, Japan, 2012.
  22. N. Tamboli and M. Younis, “Coverage-aware connectivity restoration in mobile sensor networks,” Journal of Network and Computer Applications, vol. 33, no. 4, pp. 363–374, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Younis and K. Akkaya, “Strategies and techniques for node placement in wireless sensor networks: a survey,” Ad Hoc Networks, vol. 6, no. 4, pp. 621–655, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Zhu, J. Song, and F. Dong, “Applications of wireless sensor network in the agriculture environment monitoring,” Procedia Engineering, vol. 16, pp. 608–614, 2011. View at Publisher · View at Google Scholar
  25. J. Chen and X. Koutsoukos, “Survey on coverage problems in wireless ad hoc sensor networks,” in IEEE SoutheastCon, Richmond, Va, USA, March 2007.
  26. L. Bao and J. J. Garcia-Luna-Aceves, “Topology management in ad hoc networks,” in Proceedings of the 4th ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC '03), pp. 129–140, Annapolis, Md, USA, June 2003. View at Scopus
  27. S. Yang, F. Dai, M. Cardei, J. Wu, and F. Patterson, “On connected multiple point coverage in wireless sensor networks,” International Journal of Wireless Information Networks, vol. 13, no. 4, pp. 289–301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Wang, G. Cao, and T. La Porta, “Movement-assisted sensor deployment,” in Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '04), pp. 119–115, Hong Kong, March 2010.
  29. N. Heo and P. K. Varshney, “Energy-efficient deployment of intelligent mobile sensor networks,” IEEE Transactions on Systems, Man, and Cybernetics Part A, vol. 35, no. 1, pp. 78–92, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Wang, G. Cao, and T. L. Porta, “Proxy-based sensor deployment for mobile sensor networks,” in Proceedings of the IEEE International Conference on Mobile Ad-Hoc and Sensor Systems (MASS '04), pp. 493–502, Fort Lauderdale, Fla, USA, October 2004. View at Scopus
  31. G. Wang, G. Cao, T. La Porta, and W. Zhang, “Sensor relocation in mobile sensor networks,” in Proceedings of the 24th Annual Joint Conference of the IEEE Conference on Computer Communications Societies (INFOCOM '05), vol. 4, pp. 2302–2312, Miami, Fla, USA, March 2005. View at Publisher · View at Google Scholar
  32. J. Wu and S. Yang, “SMART: a scan-based movement assisted sensor deployment method in wireless sensor networks,” in Proceedings of the 24th International Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '05), pp. 2313–2324, Miami, Fla, USA, March 2005. View at Publisher · View at Google Scholar
  33. A. A. Abbasi, K. Akkaya, and M. Younis, “A distributed connectivity restoration algorithm in wireless sensor and actor networks,” in Proceedings of the 32nd IEEE Conference on Local Computer Networks (LCN '07), pp. 496–503, Dublin, Ireland, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Akkaya, F. Senel, A. Thimmapuram, and S. Uludag, “Distributed recovery from network partitioning in movable sensor/actor networks via controlled mobility,” IEEE Transactions on Computers, vol. 59, no. 2, pp. 258–271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Basu and J. Redi, “Movement control algorithms for realization of fault-tolerant ad hoc robot networks,” IEEE Network, vol. 18, no. 4, pp. 36–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Akkaya and M. Younis, “C2AP: coverage-aware and connectivity-constrained actor positioning in wireless sensor and actor networks,” in Proceedings of the IEEE International Performance, Computing, and Communications Conference (IPCCC '07), pp. 281–288, 2007. View at Publisher · View at Google Scholar
  37. K. Akkaya and M. Younis, “Coverage and latency aware actor placement mechanisms in WSANs,” International Journal of Sensor Networks, vol. 3, no. 3, pp. 152–164, 2008. View at Google Scholar
  38. A. Abbasi, U. Baroudi, M. Younis, and K. Akkaya, “C2AM: an algorithm for application aware movement-assisted recovery in wireless sensor and actor networks,” in Proceedings of the International Conference on Wireless Communications and Mobile Computing: Connecting the World Wirelessly, pp. 655–659, ACM, Leipzig, Germany. View at Publisher · View at Google Scholar
  39. M. Younis, S. Lee, and A. A. Abbasi, “A localized algorithm for restoring internode connectivity in networks of moveable sensors,” IEEE Transactions on Computers, vol. 59, no. 12, pp. 1669–1682, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Varga and R. Hornig, “An overview of the OMNeT++ simulation environment.,” in Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems and Workshops, pp. 1–10, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Marseille, France, 2008.