Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 917292, 7 pages
http://dx.doi.org/10.1155/2014/917292
Research Article

Genome-Wide Characterisation of Gene Expression in Rice Leaf Blades at 25°C and 30°C

1China National Rice Research Institute, No. 359, Tiyuchang Road, Hangzhou 310006, China
2iBioinfo Group, Lexington, MA 02421, USA
3School of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
4Nantong University, Nantong 226001, China

Received 5 August 2013; Accepted 30 September 2013; Published 29 January 2014

Academic Editors: B. Shen, J. Wang, and J. Wang

Copyright © 2014 Zhi-guo E et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Fujita, M. Fujita, K. Shinozaki, and K. Yamaguchi-Shinozaki, “ABA-mediated transcriptional regulation in response to osmotic stress in plants,” Journal of Plant Research, vol. 124, no. 4, pp. 509–525, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. C. Lee and S. Luan, “ABA signal transduction at the crossroad of biotic and abiotic stress responses,” Plant, Cell and Environment, vol. 35, no. 1, pp. 53–60, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. G. T. Huang, S. L. Ma, L. P. Bai et al., “Signal transduction during cold, salt, and drought stresses in plants,” Molecular Biology Reports, vol. 39, no. 2, pp. 969–987, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Takahashi, T. Kawakatsu, Y. Wakasa, S. Hayashi, and F. Takaiwa, “A rice transmembrane bZIP transcription factor, OsbZIP39, regulates the endoplasmic reticulum stress response,” Plant and Cell Physiology, vol. 53, no. 1, pp. 144–153, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Liu, Y. Wu, and X. Wang, “bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice,” Planta, vol. 235, no. 6, pp. 1157–1169, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Hossain, Y. Lee, J. I. Cho et al., “The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice,” Plant Molecular Biology, vol. 72, no. 4, pp. 557–566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Dai, Y. Xu, Q. Ma et al., “Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis,” Plant Physiology, vol. 143, no. 4, pp. 1739–1751, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Zhang, G. Zhao, J. Jia, X. Liu, and X. Kong, “Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress,” Journal of Experimental Botany, vol. 63, no. 1, pp. 203–214, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Agarwal, M. P. Reddy, and J. Chikara, “WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants,” Molecular Biology Reports, vol. 38, no. 6, pp. 3883–3896, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Chen, Z. Lai, J. Shi, Y. Xiao, Z. Chen, and X. Xu, “Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress,” BMC Plant Biology, vol. 10, article 281, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Sharma, D. De Vleesschauwer, M. K. Sharma, and P. C. Ronald, “Recent advances in dissecting stress-regulatory crosstalk in rice,” Molecular Plant, vol. 6, pp. 250–260, 2013. View at Google Scholar
  12. A. Nijhawan, M. Jain, A. K. Tyagi, and J. P. Khurana, “Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice,” Plant Physiology, vol. 146, no. 2, pp. 333–350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. C. A. Ross, Y. Liu, and Q. J. Shen, “The WRKY gene family in rice (Oryza sativa),” Journal of Integrative Plant Biology, vol. 49, no. 6, pp. 827–842, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Kawahara, M. de la Bastide, J. P. Hamilton et al., “Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data,” Rice, vol. 6, article 4, 2013. View at Publisher · View at Google Scholar
  15. T. Nagai and A. Makino, “Differences between rice and wheat in temperature responses of photosynthesis and plant growth,” Plant and Cell Physiology, vol. 50, no. 4, pp. 744–755, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Xiang, N. Tang, H. Du, H. Ye, and L. Xiong, “Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice,” Plant Physiology, vol. 148, no. 4, pp. 1938–1952, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Tang, H. Zhang, X. Li, J. Xiao, and L. Xiong, “Constitutive activation of transcription factor OsbZIP46 improves drought tolerance in rice,” Plant Physiology, vol. 158, no. 4, pp. 1755–1768, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Cao, Q. Zhang, Y. Chen et al., “Identification of differential expression genes in leaves of rice (Oryza sativa L.) in response to heat stress by cDNA-AFLP analysis,” BioMed Research International, vol. 2013, Article ID 576189, 11 pages, 2013. View at Publisher · View at Google Scholar
  19. H. Chauhan, N. Khurana, P. Agarwal, and P. Khurana, “Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress,” Molecular Genetics and Genomics, vol. 286, no. 2, pp. 171–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Zou, A. Liu, X. Chen et al., “Expression analysis of nine rice heat shock protein genes under abiotic stresses and ABA treatment,” Journal of Plant Physiology, vol. 166, no. 8, pp. 851–861, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Mittal, D. A. Madhyastha, and A. Grover, “Gene expression analysis in response to low and high temperature and oxidative stresses in rice: combination of stresses evokes different transcriptional changes as against stresses applied individually,” Plant Science, vol. 197, pp. 102–113, 2012. View at Google Scholar
  22. D. Mittal, D. A. Madhyastha, and A. Grover, “Genome-wide transcriptional profiles during temperature and oxidative stress reveal coordinated expression patterns and overlapping regulons in rice,” PLoS ONE, vol. 7, no. 7, Article ID e40899, 2012. View at Google Scholar
  23. R. B. Saad, D. Fabre, D. Mieulet et al., “Expression of the Aeluropus littoralis AlSAP gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis,” Plant, Cell and Environment, vol. 35, no. 3, pp. 626–643, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. M. R. Park, K. Y. Yun, B. Mohanty et al., “Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development,” Plant, Cell and Environment, vol. 33, no. 12, pp. 2209–2230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. G. Zhang, G. Guo, X. Hu et al., “Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome,” Genome Research, vol. 20, no. 5, pp. 646–654, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Lu, G. Lu, D. Fan et al., “Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq,” Genome Research, vol. 20, no. 9, pp. 1238–1249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Gu and R. Guo, “Genome-wide detection and analysis of alternative splicing for nucleotide binding site-leucine-rich repeats sequences in rice,” Journal of Genetics and Genomics, vol. 34, no. 3, pp. 247–257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. B. B. Wang and V. Brendel, “Genomewide comparative analysis of alternative splicing in plants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 7175–7180, 2006. View at Publisher · View at Google Scholar · View at Scopus