Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 964643, 6 pages
http://dx.doi.org/10.1155/2014/964643
Research Article

Modified Fractional Variational Iteration Method for Solving the Generalized Time-Space Fractional Schrödinger Equation

1Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
2Department of Basic Causes, Nanjing Institute of Technology, Nanjing 211167, China

Received 8 May 2014; Revised 24 July 2014; Accepted 27 July 2014; Published 4 September 2014

Academic Editor: Mustafa Inc

Copyright © 2014 Baojian Hong and Dianchen Lu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Dalir and M. Bashour, “Applications of fractional calculus,” Applied Mathematical Sciences, vol. 4, pp. 1021–1032, 2010. View at Google Scholar · View at MathSciNet · View at Scopus
  2. I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA, 1999. View at MathSciNet
  3. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993.
  4. H. H. Sun, A. A. Abdelwahab, and B. Onaral, “Linear approximation of transfer function with a pole of fractional order,” IEEE Transactions on Automatic Control, vol. 29, no. 5, pp. 441–444, 1984. View at Google Scholar · View at Scopus
  5. N. Laskin, “Fractional market dynamics,” Physica A, vol. 287, no. 3-4, pp. 482–492, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. S. Panda, A. Bhowmik, R. Das, R. Repaka, and S. C. Martha, “Application of homotopy analysis method and inverse solution of a rectangular wet fin,” Energy Conversion and Management, vol. 80, pp. 305–318, 2014. View at Google Scholar
  7. K. A. Gepreel, “The homotopy perturbation method applied to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations,” Applied Mathematics Letters, vol. 24, no. 8, pp. 1428–1434, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. L. N. Song and W. G. Wang, “A new improved Adomian decomposition method and its application to fractional differential equations,” Applied Mathematical Modelling, vol. 37, no. 3, pp. 1590–1598, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  9. Z. Odibat, S. Momani, and V. S. Erturk, “Generalized differential transform method: application to differential equations of fractional order,” Applied Mathematics and Computation, vol. 197, no. 2, pp. 467–477, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  10. M. Inc and A. Akgül, “Numerical solution of seventh-order boundary value problems by a novel method,” Abstract and Applied Analysis, vol. 2014, Article ID 745287, 9 pages, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  11. J. H. He, “Variational iteration method—a kind of non-linear analytical technique: some examples,” International Journal of Non-Linear Mechanics, vol. 34, no. 4, pp. 699–708, 1999. View at Google Scholar · View at Scopus
  12. M. A. Noor and S. T. Mohyud-Din, “Variational iteration method for solving higher-order nonlinear boundary value problems using He's polynomials,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 9, pp. 141–156, 2008. View at Google Scholar
  13. S. Momani and S. Abuasad, “Application of He's variational iteration method to Helmholtz equation,” Chaos, Solitons & Fractals, vol. 27, no. 5, pp. 1119–1123, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. J. H. He, “Some applications of nonlinear fractional differential equations and their approximations,” Bulletin of Science, Technology & Society, vol. 15, no. 2, pp. 86–90, 1999. View at Google Scholar
  15. J. He, “A short remark on fractional variational iteration method,” Physics Letters A, vol. 375, no. 38, pp. 3362–3364, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. M. Merdan, “A numeric-analytic method for time-fractional Swift-Hohenberg (S-H) equation with modified Riemann-Liouville derivative,” Applied Mathematical Modelling. Simulation and Computation for Engineering and Environmental Systems, vol. 37, no. 6, pp. 4224–4231, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  17. G. C. Wu, “A fractional variational iteration method for solving fractional nonlinear differential equations,” Computers & Mathematics with Applications, vol. 61, no. 8, pp. 2186–2190, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  18. G. C. Wu and D. Baleanu, “Discrete fractional logistic map and its chaos,” Nonlinear Dynamics, vol. 75, no. 1-2, pp. 283–287, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  19. G. C. Wu and D. Baleanu, “Variational iteration method for the Burgers' flow with fractional derivatives—new Lagrange multipliers,” Applied Mathematical Modelling, vol. 37, no. 9, pp. 6183–6190, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  20. M. Inc, “The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method,” Journal of Mathematical Analysis and Applications, vol. 345, no. 1, pp. 476–484, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  21. M. G. Sakar, F. Erdogan, and A. Yıldırım, “Variational iteration method for the time-fractional Fornberg-Whitham equation,” Computers & Mathematics with Applications, vol. 63, no. 9, pp. 1382–1388, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  22. M. Ganjiani, “Solution of nonlinear fractional differential equations using homotopy analysis method,” Applied Mathematical Modelling. Simulation and Computation for Engineering and Environmental Systems, vol. 34, no. 6, pp. 1634–1641, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  23. S. Z. Rida, H. M. El-Sherbiny, and A. A. M. Arafa, “On the solution of the fractional nonlinear Schrödinger equation,” Physics Letters A, vol. 372, no. 5, pp. 553–558, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  24. R. Hao, L. Li, Z. Li, W. Xue, and G. Zhou, “A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrödinger equation with variable coefficients,” Optics Communications, vol. 236, no. 1–3, pp. 79–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Chen and B. Li, “An extended subequation rational expansion method with symbolic computation and solutions of the nonlinear Schrödinger equation model,” Nonlinear Analysis: Hybrid Systems, vol. 2, no. 2, pp. 242–255, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  26. B. Li and Y. Chen, “On exact solutions of the nonlinear Schrödinger equations in optical fiber,” Chaos, Solitons and Fractals, vol. 21, no. 1, pp. 241–247, 2004. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  27. R. Almeida and D. F. M. Torres, “Calculus of variations with fractional derivatives and fractional integrals,” Applied Mathematics Letters, vol. 22, no. 12, pp. 1816–1820, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  28. S. Yang, A. Xiao, and H. Su, “Convergence of the variational iteration method for solving multi-order fractional differential equations,” Computers & Mathematics with Applications, vol. 60, no. 10, pp. 2871–2879, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  29. M. Ganjiani, “Solution of nonlinear fractional differential equations using homotopy analysis method,” Applied Mathematical Modelling, vol. 34, no. 6, pp. 1634–1641, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  30. M. A. E. Herzallah and K. A. Gepreel, “Approximate solution to the time-space fractional cubic nonlinear Schrodinger equation,” Applied Mathematical Modelling, vol. 36, no. 11, pp. 5678–5685, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  31. A. Wazwaz, “A study on linear and nonlinear Schrodinger equations by the variational iteration method,” Chaos, Solitons and Fractals, vol. 37, no. 4, pp. 1136–1142, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus