Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014 (2014), Article ID 982358, 8 pages
Research Article

Protective Action of Antioxidants on Hepatic Damage Induced by Griseofulvin

1Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160 Pab II, 1428 Buenos Aires, Argentina
2Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Avenida, Córdoba 2351 1er subsuelo, 1120 Buenos Aires, Argentina

Received 30 August 2013; Accepted 10 October 2013; Published 12 January 2014

Academic Editors: T. Puchalski and C.-P. Wu

Copyright © 2014 M. del C. Martinez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Erythropoietic protoporphyria (EPP) is a disease associated with ferrochelatase deficiency and characterized by the accumulation of protoporphyrin IX (PROTO IX) in erythrocytes, liver, and skin. In some cases, a severe hepatic failure and cholestasis were observed. Griseofulvin (Gris) develops an experimental EPP with hepatic manifestations in mice such as PROTO IX accumulation followed by cellular damage as wells as necrotic and inflammatory processes. The antioxidant defense system was also altered. The aim was to evaluate the possible protective effect of different antioxidant compounds: trolox (Tx), ascorbic acid (Asc), the combination Tx and Asc, melatonin (Mel), and the polyphenols: ellagic acid, quercetin, chlorogenic acid, caffeic acid, gallic acid, and ferulic acid on liver damage and oxidative stress markers in a mouse model of EPP. Coadministration of Gris with Tx, Asc, and its combination, or Mel mainly affected heme biosynthetic pathway, resulting in a decrease in ALA-S activity which was increased by Gris, while the tested polyphenols exerted a protective effect on oxidative stress, decreasing lipid peroxidation and the activity of some antioxidant enzymes. In conclusion, antioxidant compounds can only protect partially against the liver damage induced by Gris, reducing oxidative stress or acting on heme regulation.