Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2014, Article ID 982358, 8 pages
http://dx.doi.org/10.1155/2014/982358
Research Article

Protective Action of Antioxidants on Hepatic Damage Induced by Griseofulvin

1Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160 Pab II, 1428 Buenos Aires, Argentina
2Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Avenida, Córdoba 2351 1er subsuelo, 1120 Buenos Aires, Argentina

Received 30 August 2013; Accepted 10 October 2013; Published 12 January 2014

Academic Editors: T. Puchalski and C.-P. Wu

Copyright © 2014 M. del C. Martinez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Batlle, Porfirinas Y Porfirias. Aspectos Clínicos, Bioquímicos y Biología Molecular, Buenos Aires, Argentina, 1997.
  2. M. Lecha, H. Puy, and J.-C. Deybach, “Erythropoietic protoporphyria,” Orphanet Journal of Rare Diseases, vol. 4, no. 1, article 19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Thunell, P. Harper, and A. Brun, “Porphyrins, porphyrin metabolism and porphyrias. IV. Pathophysiology of erythyropoietic protoporphyria—Diagnosis, care and monitoring of the patient,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 60, no. 7, pp. 581–604, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. T. M. Cox, “Protoporphyria,” in The Porphyrin Handbook. Medical Aspects of Porphyrias, K. M. Kadish, K. M. Smith, and R. Guilard, Eds., vol. 14, chapter 90, pp. 121–149, Academic Press, San Diego, Calif, USA, 2003. View at Google Scholar
  5. L. Meerman, “Erythropoietic protoporphyria: an overview with emphasis on the liver,” Scandinavian Journal of Gastroenterology, vol. 35, no. 232, pp. 79–85, 2000. View at Google Scholar · View at Scopus
  6. M. Bruguera and C. Herrero, “Liver disease in erythropoietic protoporphyria,” Gastroenterologia y Hepatologia, vol. 28, no. 10, pp. 632–636, 2005. View at Google Scholar · View at Scopus
  7. S. H. Shapiro and Z. Wessely, “Ultrastructural changes of intrahepatic bile ductules in griseofulvin fed mice,” Annals of Clinical and Laboratory Science, vol. 14, no. 1, pp. 69–77, 1984. View at Google Scholar · View at Scopus
  8. K. Tanaka, T. Ohgami, and S. Nonaka, “Experimental murine protoporphyria induced by griseofulvin (GF): the relationship between hepatic porphyrin levels and liver function test values in mice treated with GF,” Journal of Dermatology, vol. 20, no. 9, pp. 545–553, 1993. View at Google Scholar · View at Scopus
  9. C. F. Polo, A. M. Buzaleh, E. S. Vazquez, S. G. Afonso, N. M. Navone, and A. M. Del Carmen Batlle, “Griseofulvin-induced hepatopathy due to abnormalities in heme pathways,” General Pharmacology, vol. 29, no. 2, pp. 207–210, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Inafuku, A. Takamiyagi, M. Oshiro, T. Kinjo, Y. Nakashima, and S. Nonaka, “Alteration of mRNA levels of δ-aminolevulinic acid synthase, ferrochelatase and heme oxygenase-1 in griseofulvin induced protoporphyria mice,” Journal of Dermatological Science, vol. 19, no. 3, pp. 189–198, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. M. D. C. Martinez, S. G. Afonso, R. P. Meiss, A. M. Buzaleh, and A. Batlle, “Hepatic damage and oxidative stress induced by griseofulvin in mice,” Cellular and Molecular Biology, vol. 55, no. 2, pp. 127–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Thunell, D. Andersson, P. Harper, A. Henrichson, Y. Floderus, and U. UlfLindh, “Effects of administration of antioxidants in acute intermittent porphyria,” European Journal of Clinical Chemistry and Clinical Biochemistry, vol. 35, no. 6, pp. 427–433, 1997. View at Google Scholar · View at Scopus
  13. F. G. Princ, A. G. Maxit, C. Cardalda, A. Batlle, and A. A. Juknat, “In vivo protection by melatonin against δ-aminolevulinic acid-induced oxidative damage and its antioxidant effect on the activity of haem enzymes,” Journal of Pineal Research, vol. 24, no. 1, pp. 1–8, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Alemzadeh and T. Feehan, “Variable effects of beta-carotene therapy in a child with erythropoietic protoporphyria,” European Journal of Pediatrics, vol. 163, no. 9, pp. 547–549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. K. E. Anderson, “Porphyria cutanea tarda: a possible role for ascorbic acid,” Hepatology, vol. 45, no. 1, pp. 6–8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Székely, A. Vereckei, A. Almási et al., “Effects of vitamin E administration on the hemorheological status and redox homeostasis of patients with porphyria cutanea tarda treated with phlebotomy,” Clinical Hemorheology and Microcirculation, vol. 36, no. 1, pp. 13–23, 2007. View at Google Scholar · View at Scopus
  17. M. D. Ferrer, P. Tauler, A. Sureda, C. Palacín, J. A. Tur, and A. Pons, “Variegate porphyria induces plasma and neutrophil oxidative stress: effects of dietary supplementation with vitamins e and C,” British Journal of Nutrition, vol. 103, no. 1, pp. 69–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. B.-F. Brigelius-Flohé and M. G. Traber, “Vitamin E: function and metabolism,” FASEB Journal, vol. 13, no. 10, pp. 1145–1155, 1999. View at Google Scholar · View at Scopus
  19. S. Cuzzocrea, C. Thiemermann, and D. Salvemini, “Potential therapeutic effect of antioxidant therapy in shock and inflammation,” Current Medicinal Chemistry, vol. 11, no. 9, pp. 1147–1162, 2004. View at Google Scholar · View at Scopus
  20. B. Poljšak and P. Raspor, “The antioxidant and pro-oxidant activity of vitamin C and trolox in vitro: a comparative study,” Journal of Applied Toxicology, vol. 28, no. 2, pp. 183–188, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T.-W. Wu, N. Hashimoto, J.-X. Au, J. Wu, D. A. G. Mickle, and D. Carey, “Trolox protects rat hepatocytes against oxyradical damage and the ischemic rat liver from reperfusion injury,” Hepatology, vol. 13, no. 3, pp. 575–580, 1991. View at Publisher · View at Google Scholar · View at Scopus
  22. K. M. K. Kam Ming Ko, P. K. Y. Pak Kin Yick, M. K. T. Poon, and S. P. I. Siu Po Ip, “Prooxidant and antioxidant effects of trolox on ferric ion-induced oxidation of erythrocyte membrane lipids,” Molecular and Cellular Biochemistry, vol. 141, no. 1, pp. 65–70, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Carr and B. Frei, “Does vitamin C act as a pro-oxidant under physiological conditions?” FASEB Journal, vol. 13, no. 9, pp. 1007–1024, 1999. View at Google Scholar · View at Scopus
  24. S. Kojo, “Vitamin C: basic metabolism and its function as an index of oxidative stress,” Current Medicinal Chemistry, vol. 11, no. 8, pp. 1041–1064, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. T. B. Ng, F. Liu, and L. Zhao, “Antioxidative and free radical scavenging activities of pineal indoles,” Journal of Neural Transmission, vol. 107, no. 11, pp. 1243–1251, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. R. J. Reiter, D.-X. Tan, C. Osuna, and E. Gitto, “Actions of melatonin in the reduction of oxidative stress: a review,” Journal of Biomedical Science, vol. 7, no. 6, pp. 444–458, 2000. View at Google Scholar · View at Scopus
  27. C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, “Polyphenols: food sources and bioavailability,” The American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 727–747, 2004. View at Google Scholar · View at Scopus
  28. A. Scalbert, I. T. Johnson, and M. Saltmarsh, “Polyphenols: antioxidants and beyond,” The American Journal of Clinical Nutrition, vol. 81, no. 1, pp. 215S–217S, 2005. View at Google Scholar · View at Scopus
  29. S. N. Nichenametla, T. G. Taruscio, D. L. Barney, and J. H. Exon, “A review of the effects and mechanisms of polyphenolics in cancer,” Critical Reviews in Food Science and Nutrition, vol. 46, no. 2, pp. 161–183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. C. F. Polo, A. L. Frisardi, E. R. Resnik, A. E. M. Schoua, and C. A. M. del Batlle, “Factors influencing fluorescence spectra of free porphyrins,” Clinical Chemistry, vol. 34, no. 4, pp. 757–760, 1988. View at Google Scholar · View at Scopus
  31. H. S. Marver, D. P. Tschudy, M. G. Perlroth, and A. Collins, “Delta-aminolevulinic acid synthetase. I. Studies in liver homogenates,” The Journal of Biological Chemistry, vol. 193, no. 12, pp. 2803–2809, 1966. View at Google Scholar · View at Scopus
  32. H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction,” Analytical Biochemistry, vol. 95, no. 2, pp. 351–358, 1979. View at Google Scholar · View at Scopus
  33. R. Rossi, E. Cardaioli, A. Scaloni, G. Amiconi, and P. Di Simplicio, “Thiol groups in proteins as endogenous reductants to determine glutathione-protein mixed disulphides in biological systems,” Biochimica et Biophysica Acta, vol. 1243, no. 2, pp. 230–238, 1995. View at Publisher · View at Google Scholar · View at Scopus
  34. W. H. Habig, M. J. Pabst, and W. B. Jakoby, “Glutathione S transferases. The first enzymatic step in mercapturic acid formation,” The Journal of Biological Chemistry, vol. 249, no. 22, pp. 7130–7139, 1974. View at Google Scholar · View at Scopus
  35. R. E. Pinto and W. Bartley, “The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates,” Biochemical Journal, vol. 112, no. 1, pp. 109–115, 1969. View at Google Scholar · View at Scopus
  36. F. Paoletti, D. Aldinucci, A. Mocali, and A. Caparrini, “A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts,” Analytical Biochemistry, vol. 154, no. 2, pp. 536–541, 1986. View at Google Scholar · View at Scopus
  37. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  38. Y. Frater, A. Brady, E. A. Lock, and F. de Matteis, “Formation of N-methyl protoporphyrin in chemically-induced protoporphyria,” Archives of Toxicology, vol. 67, no. 3, pp. 179–185, 1993. View at Google Scholar · View at Scopus
  39. R. M. A. Bellingham, A. H. Gibbs, F. de Matteis, L.-Y. Lian, and G. C. K. Roberts, “Determination of the structure of an N-substituted protoporphyrin isolated from the livers of griseofulvin-fed mice,” Biochemical Journal, vol. 307, no. 2, pp. 505–512, 1995. View at Google Scholar · View at Scopus
  40. T.-W. Wu, N. Hashimoto, J. Wu et al., “The cytoprotective effect of Trolox demonstrated with three types of human cells,” Biochemistry and Cell Biology, vol. 68, no. 10, pp. 1189–1194, 1990. View at Google Scholar · View at Scopus
  41. G. W. Burton, K. U. Ingold, and K. E. Thompson, “An improved procedure for the isolation of ghost membranes from human red blood cells,” Lipids, vol. 16, no. 12, p. 946, 1981. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Gerez, E. Vazquez, F. Caballero, C. Polo, and A. Batlle, “Altered heme pathway regulation and drug metabolizing enzyme system in a mouse model of hepatocarcinogenesis: effect of veronal,” General Pharmacology, vol. 29, no. 4, pp. 569–573, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Hardeland and S. R. Pandi-Perumal, “Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug,” Nutrition and Metabolism, vol. 2, article 22, pp. 1–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. D.-X. Tan, L. C. Manchester, M. P. Terron, L. J. Flores, and R. J. Reiter, “One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?” Journal of Pineal Research, vol. 42, no. 1, pp. 28–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. T.-H. Tseng, C.-J. Wang, E.-S. Kao, and H.-Y. Chu, “Hibiscus protocatechuic acid protects against oxidative damage induced by tert-butylhydroperoxide in rat primary hepatocytes,” Chemico-Biological Interactions, vol. 101, no. 2, pp. 137–148, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Raneva, H. Shimasaki, Y. Ishida, N. Ueta, and E. Niki, “Antioxidative activity of 3,4-dihydroxyphenylacetic acid and caffeic acid in rat plasma,” Lipids, vol. 36, no. 10, pp. 1111–1116, 2001. View at Google Scholar · View at Scopus
  47. Z. Sroka and W. Cisowski, “Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids,” Food and Chemical Toxicology, vol. 41, no. 6, pp. 753–758, 2003. View at Publisher · View at Google Scholar · View at Scopus