Research Article  Open Access
Effect of Aging Treatment on the Damping Capacity and Mechanical Properties of Mg6Al1Zn Alloy
Abstract
The damping capacity and mechanical properties of Mg6Al1Zn alloy after heat treatment were investigated. The damping characteristics of unheattreated, solution treated, and aged Mg6Al1Zn specimens were determined by measuring the damping ratio and the logarithmic decrement of free vibrations of a bending beam clamped at one side. The microstructural evaluations confirmed that the βMg_{17}Al_{12} phase was reprecipitated after aging and increased with an increase in aging time. The peak level of damping ratio and logarithmic decrement was obtained after 34 hr of aging time, over which the damping capacity declined according to increasing amount of strong pining points.
1. Introduction
Magnesium alloys have great potential for the applications in suppressing mechanical vibration and attenuating wave propagation for the control of noise and the stabilization of structure components because of their low density and good damping capacity [1–4]. However, the use of magnesium alloys has been limited to narrow range because of the limited mechanical properties such as low hardness and low tensile strength [5]. Recently, a large number of research studies have focused on improving the mechanical properties of magnesium alloys by alloying [6, 7], plastic deformation [8–12], or heat treatment [9, 13]. However, the improvement of mechanical properties often results in a decline of damping capacity [14, 15]. For further engineering applications of magnesium, balancing the damping behavior and the mechanical properties has been a critical challenge [14, 16].
The damping capacity of magnesium alloys is considered to be associated with different characteristics of precipitation, such as the presence and interaction of precipitation, and crystal lattice defects, such as dislocations and impurity atoms [17–19]. A good combination of mechanical properties and damping capacity could be achieved if the dislocations are firmly pinned by the impurity atoms and the phase precipitates, but on the other hand the dislocations are allowed to vibrate between these pinning points [20–22].
In the present work, the effect of heat treatment (solid solution and different aging durations) on the internal damping capacity and mechanical properties of Mg6Al1Zn (commercially known as AZ61) alloy and their relations was investigated. The damping tests were conducted using impulsefrequency response method with single cantilever vibration mode at room temperature. The intrinsic damping behavior was discussed in light of the microstructure characteristic and damping data.
2. Material and Experimental Procedure
The experiments were conducted using Mg6Al1Zn alloy (AZ61). The chemical composition of the used material is listed in Table 1. Figure 1 shows the SEM micrograph of unheattreated (asreceived) AZ61 alloy specimen. The unheattreated specimen shows a lamellar mixture of depleted Mg solid solution (αMg) and intermetallic Mg_{17}Al_{12} compound. The intermetallic compound is revealed to be a mixture of discontinuous and continuous Mg_{17}Al_{12} βphase at grain boundaries [23]. The EDS of the unheattreated specimen shown in Figure 1(b) reveal that the elemental compositions of both gray and bright phases include Mg, Zn, O and Al.

(a)
(b)
The unheattreated specimens were subjected to solid solution treatment at 410°C for 24 hr followed by water quenching. The βphase and eutectic phase (formed at the grain boundaries during the casting into the matrix) disappeared and the matrix transformed to single phase, supersaturated solid solution. The specimens were aged at 200°C afterwards, for different intervals of time. The Xray diffraction pattern of the solution treated and aged for 34 hr is shown in Figure 2. The heat treatment of AZ61 alloy is fundamentally a microstructure transformation process in which Mg_{17}Al_{12} phase dissolves during solid solution and then reprecipitates during aging and increases with the increase in aging time [24].
(a)
(b)
Damping test was performed using impulsefrequency response method with single cantilever vibration mode, which can simply and rapidly measure damping property of the material. The testing schematic diagram is shown in Figure 3. The dimensions of the damping test specimens were 50 mm × 20 mm × 2 mm. The damping test was conducted at room temperature. The measurement sequence consists of recording the free vibrations of the specimens excited by knocking it with an adequate hammer. After the exciting hammer hits the specimen, the amplitude of vibration gradually decreases with time as the vibration energy is dissipated. These decayed amplitudes and frequency of vibration were transferred to oscilloscope and computer by an accelerometer attached on the specimen. The amplitude decay as a function of time and the vibration modes was detected by the acquisition data system.
Several techniques are used to quantify the level of damping in a vibration structure [25–27]. Frequency domain approach (halfpower bandwidth method) was used in this work as it is most commonly used to measure damping ratio in frequency domain [28]. This method is based on the frequency response function curve and consists in obtaining the maximum amplitude related to the natural frequency of the system and the two frequencies that have response amplitude equal to the maximum divided by the square root of two points corresponding to half power point. The loss factor of this method can be defined aswhere is the frequency at which the peak of the curve is obtained and and are the two frequencies, for which the frequency response is times the one at resonance. The damping ratio in a single degree of freedom is given by For small damping ( ≪ 1), the logarithmic decrement, , is defined aswhere is the internal friction and can be calculated from the bandwidth by
3. Results and Discussion
Figure 4 shows frequency response variation as a function of frequency transformation using calculations carried out in MatLab program. The signals input into fast Fourier transform (FFT) were settled by Fourier transformation using MatLab program to measure the damping capacity from damping test of cantilever. The resonant frequencies of the unheattreated, solution treated, and aged AZ61 at 200°C for different intervals of time were calculated from these curves and listed in Table 2. For a quantitative measure of damping behavior, the halfpower bandwidth method was used. The frequency response function is plotted by linear curve fitting as in the Figure 4, and the resonant frequency () and halfpower bandwidth frequency () are calculated and damping loss factor () can be determined using the data in (1). The was determined from the resonant peak value.

(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
The usual convention is to consider points and to be located at frequencies on the response curve where the amplitude of response of these points is times the maximum amplitude. The bandwidth at these points is frequently referred to as halfpower bandwidth. Mandal et al. [25] reported that halfpower bandwidth method is useful for only small loss factor and the thickness of the specimen must be smaller than the corresponding wavelength.
Figure 5 illustrates the corresponding damping ratio, , of the AZ61 as a function of the aging time at 200°C, compared with the unheattreated and solution treated specimens. The unheat treated specimen has 2.58 × 10^{−3} damping ratio. After solid solution, the damping ratio value slightly decreases to 2.24 × 10^{−3}, which is resulted due to dissolution of the βMg_{17}Al_{12} phase. However, after aging, the damping ratio continuously decreases to approximately 0.5 hr of aging time. An increasing trend is observed in the damping ratio up to 34 hr aging time, after the damping ratio shows a reduction. The peak drop of 1.8 × 10^{−3} is observed at 167 hr aging time.
The damping ratio of the specimen aged at 34 hr increased because of increasing the interface area of the two phases with different stiffness, which is caused by discontinuous βphase precipitation inside αMg matrix. Xu et al. [29] confirmed that numerous discontinuous Mg_{17}Al_{12} were distributed at the newly formed dynamic recrystallized grain boundaries as shown in Figures 6(a) and 6(b). Enhancement of damping properties is recognized to be attained by dislocation, interface of particles with different stiffness, and high damping particle or phase.
(a)
(b)
The decline in damping ratio after 34 hr aging time is appraised to be caused by the hardening of microstructure coinciding with the transition from αMg matrix with discontinuous βphase to lamellar structure (Figure 6(b)). The SEM micrograph shown in Figure 6(a) reveals that the alloy exhibits some Mg_{17}Al_{12} precipitates at the grain boundaries and becomes interconnected to form a network. As it can be seen from Figure 6(b), there is substantive lamellar βphase distributing in the microstructure. The lamellar structure which is the product of the discontinuous precipitation always initiates at grain boundaries (in Figure 6(a)) and grows perpendicular to the boundary. The previous studies observed that the lamellar structures appear mostly under 200°C and it is hard to see them above 250°C [30]. The damping ratio of specimen aged at 167 hr aging time decreased by about 30% after formation of lamellar structure.
Figure 7 illustrates the logarithmic decrement, δ, of the unheattreated, solution treated, and aged AZ61. The figure describes the effect of the Mg_{17}Al_{12} precipitates on the decay property. It has already been observed from the SEM investigation that, after solid solution, the αMg solution becomes in the supersaturated state and thereby there will be a number of solute atoms distributing along the grain boundaries that play a pinning role, which makes the movement of grain boundaries more difficult and thus the decay is decreased. After aging treatment up to 34 hr aging time, most of the solute Al atoms precipitate in the βphase and decrease the concentration of solute Al atoms in the αMg matrix and the spacing between weak pining points becomes large. Thus, the diffusion of Mg atoms along grain boundaries becomes smooth and consequently the logarithmic decrement after aging process increases, as shown in Figure 7. At longer aging time (>34 hr) the precipitation hardening which is based on the principle of restricting dislocation mobility generally leads to reduction in the decay values.
Figure 8 illustrates the corresponding hardness measurements (HV) of the AZ61 alloy. The unheattreated specimen has hardness value of 64 HV. After 24 hr solid solution treatment, the hardness value decreases to 57 HV. The small deviations exhibited by the untreated and the solution treated specimens are assumed to be arisen from the fact that the untreated specimen has already some βphase. However, the Figure shows a slight decrease in the hardness value in the initial stages of aging treatment up to approximately 2 hr, which may be associated with a decrease in the dislocation density due to recovery and grain boundary relaxation processes.
After prolonged aging time up to 34 hr, it is clearly noticed that the HV values are slightly increased. Thereafter, with further increase in the aging time up to approximately 167 hr, the dependence of hardness values on the aging time became more obvious. The increase in hardness values is likely to be due to the precipitation of βphase in the matrix. By extending aging time (184 hr), the effect of grain growth becomes more dominant than the strengthening effect due to βprecipitation [13].
Figure 9 shows the tensile properties curves at ambient temperature for the AZ61 alloy aged at 200°C. At the beginning of aging (up to 2 hr), the tensile strength and the yield stress slightly decreased with aging time. When being aged up to 34 hr, all samples have shown slightly increased strength value. When aging time exceeds 34 hr, the tensile strength value increases due to the development of Mg_{17}Al_{12} precipitates
4. Conclusions
The damping behavior of heat treated AZ61 alloy has been investigated. The following have been found.(i)Upon aging for 2 hr there is a reappearance of the discontinuous precipitation (βphase Mg_{17}Al_{12}), with the lamellar structure of αMg. At 167 hr aging time, and the majority of grains are totally transformed into lamellar structure.(ii)On increasing the aging time up to 34 hr, the dependence of damping ratio on the aging time became more pronounced because of the precipitation of βphase. Longer aging time (>34 hr) introduces higher amounts of Mg_{17}Al_{12} precipitates in the microstructure that are able to pin the dislocations as strong pinning points, which in turn cause lower damping values.(iii)The hardness values and the tensile strength of the aged AZ61 alloy are decreased to approximately 2 hr of aging time. After prolonged aging time up to 34 hr, the alloy started to show slight increase in mechanical properties values. When being aged for 167 hr, the dependence of mechanical properties on the aging time becomes more obvious.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgment
This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant no. 829022D1434. The authors, therefore, acknowledge with thanks DSR technical and financial support.
References
 K. Nishiyama, R. Matsui, Y. Ikeda, S. Niwa, and T. Sakaguchi, “Damping properties of a sintered MgCuMn alloy,” Journal of Alloys and Compounds, vol. 355, no. 12, pp. 22–25, 2003. View at: Publisher Site  Google Scholar
 R. Schaller, “Metal matrix composites, a smart choice for high damping materials,” Journal of Alloys and Compounds, vol. 355, no. 12, pp. 131–135, 2003. View at: Publisher Site  Google Scholar
 C. R. Gentle and M. R. Lacey, “Design of a novel insulated construction material,” Materials and Design, vol. 20, no. 6, pp. 311–315, 1999. View at: Publisher Site  Google Scholar
 H. Friedrich and S. Schumann, “Research for a ‘new age of magnesium’ in the automotive industry,” Journal of Materials Processing Technology, vol. 117, no. 3, pp. 276–281, 2001. View at: Publisher Site  Google Scholar
 W. Diqing, W. Jincheng, W. Gaifang et al., “Effect of Mn on damping capacities, mechanical properties, and corrosion behaviour of high damping Mg–3 wt.%Ni based alloy,” Materials Science and Engineering A, vol. 494, no. 12, pp. 139–142, 2008. View at: Publisher Site  Google Scholar
 M. E. Alam, A. M. S. Hamouda, Q. B. Nguyen, and M. Gupta, “Improving microstructural and mechanical response of new AZ41 and AZ51 magnesium alloys through simultaneous addition of nanosized Al_{2}O_{3} particulates and Ca,” Journal of Alloys and Compounds, vol. 574, pp. 565–572, 2013. View at: Publisher Site  Google Scholar
 K. Suresh, K. P. Rao, Y. V. R. K. Prasad, N. Hort, and K. U. Kainer, “Microstructure and mechanical properties of ascast MgSnCa alloys and effect of alloying elements,” Transactions of Nonferrous Metals Society of China, vol. 23, no. 12, pp. 3604–3610, 2013. View at: Publisher Site  Google Scholar
 A. ElMorsy, A. Ismail, and M. Waly, “Microstructural and mechanical properties evolution of magnesium AZ61 alloy processed through a combination of extrusion and thermomechanical processes,” Materials Science and Engineering A, vol. 486, no. 12, pp. 528–533, 2008. View at: Publisher Site  Google Scholar
 A. Volkov and I. Kliukin, “Improving the mechanical properties of pure magnesium through cold hydrostatic extrusion and lowtemperature annealing,” Materials Science and Engineering: A, vol. 627, pp. 56–60, 2015. View at: Publisher Site  Google Scholar
 H. Zhang, Y. Yan, J. Fan et al., “Improved mechanical properties of AZ31 magnesium alloy plates by prerolling followed by warm compression,” Materials Science and Engineering A, vol. 618, pp. 540–545, 2014. View at: Google Scholar
 B. Song, R. Xin, G. Chen, X. Zhang, and Q. Liu, “Improving tensile and compressive properties of magnesium alloy plates by precold rolling,” Scripta Materialia, vol. 66, no. 12, pp. 1061–1064, 2012. View at: Publisher Site  Google Scholar
 M. Diez, H. Kim, V. Serebryany, S. Dobatkin, and Y. Estrin, “Improving the mechanical properties of pure magnesium by threeroll planetary milling,” Materials Science and Engineering: A, vol. 612, pp. 287–292, 2014. View at: Publisher Site  Google Scholar
 A. ElMorsy and A. Farahat, “The influence of age hardening on the microstructure and mechanical behavior of wrought magnesium alloy AZ61,” Steel Research International, pp. 827–830, 2012. View at: Google Scholar
 D. Wan, J. Wang, and G. Yang, “A study of the effect of Y on the mechanical properties, damping properties of high damping Mg0.6%Zr based alloys,” Materials Science and Engineering A, vol. 517, no. 12, pp. 114–117, 2009. View at: Publisher Site  Google Scholar
 X.S. Hu, X.D. He, M.Y. Zheng, and K. Wu, “Effect of small tensile deformation on damping capacities of Mg1% Al alloy,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 20, no. 2, pp. s444–s447, 2010. View at: Publisher Site  Google Scholar
 J. Wang, W. Wei, X. Huang, L. Li, and F. Pan, “Preparation and properties of Mg–Cu–Mn–Zn–Y damping magnesium alloy,” Materials Science and Engineering A, vol. 528, no. 21, pp. 6484–6488, 2011. View at: Publisher Site  Google Scholar
 L. Lihua, Z. Xiuqin, L. Xianfeng, W. Haowei, and M. Naiheng, “Effect of silicon on damping capacities of pure magnesium and magnesium alloys,” Materials Letters, vol. 61, no. 1, pp. 231–234, 2007. View at: Publisher Site  Google Scholar
 S. Feng, W. Zhang, Y. Zhang, J. Guan, and Y. Xu, “Microstructure, mechanical properties and damping capacity of heattreated MgZnYNdZr alloy,” Materials Science and Engineering A, vol. 609, pp. 283–292, 2014. View at: Publisher Site  Google Scholar
 B. Yan, X. Dong, R. Ma, S. Chen, Z. Pan, and H. Ling, “Effects of heat treatment on microstructure, mechanical properties and damping capacity of MgZnYZr alloy,” Materials Science and Engineering A, vol. 594, pp. 168–177, 2014. View at: Publisher Site  Google Scholar
 X.S. Hu, X.J. Wang, X.D. He, K. Wu, and M.Y. Zheng, “Low frequency damping capacities of commercial pure magnesium,” Transactions of Nonferrous Metals Society of China, vol. 22, no. 8, pp. 1907–1911, 2012. View at: Publisher Site  Google Scholar
 X. S. Hu, Y. K. Zhang, M. Y. Zheng, and K. Wu, “A study of damping capacities in pure Mg and MgNi alloys,” Scripta Materialia, vol. 52, no. 11, pp. 1141–1145, 2005. View at: Publisher Site  Google Scholar
 X. S. Hu, K. Wu, M. Y. Zheng, W. M. Gan, and X. J. Wang, “Low frequency damping capacities and mechanical properties of MgSi alloys,” Materials Science and Engineering: A, vol. 452453, pp. 374–379, 2007. View at: Publisher Site  Google Scholar
 C. Wen, Y. Yamada, K. Shimojima et al., “Microstructure evolution and mechanical properties of AZ91 Mg foams,” in Proceedings of the 5th International Conference on Magnesium Alloys and their Applications, Munich, Germany, B. Mordike and K. Kainer, Eds., pp. 571–576, 2000. View at: Google Scholar
 Z. Zhang, X. Zeng, and W. Ding, “The influence of heat treatment on damping response of AZ91D magnesium alloy,” Materials Science and Engineering A, vol. 392, no. 12, pp. 150–155, 2005. View at: Publisher Site  Google Scholar
 N. K. Mandal, R. A. Rahman, and M. S. Leong, “Experimental study on loss factor for corrugated plates by bandwidth method,” Ocean Engineering, vol. 31, no. 10, pp. 1313–1323, 2004. View at: Publisher Site  Google Scholar
 K. S. Umashankar, A. Abhinav, K. V. Gangadharan, and D. Vijay, “Damping behaviour of cast and sintered aluminium,” ARPN Journal of Engineering and Applied Sciences, vol. 4, no. 6, pp. 66–71, 2009. View at: Google Scholar
 A. Rivière, “Measurement of high damping: techniques and analysis,” Journal of Alloys and Compounds, vol. 355, no. 12, pp. 201–206, 2003. View at: Publisher Site  Google Scholar
 A. Bertha and J. M. Roesset, “Analytical evaluation of the accuracy of the halfpower bandwidth method to estimate damping ratios in a structure,” in Proceedings of the 4th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII '09), pp. 2–9, July 2009. View at: Google Scholar
 S. W. Xu, N. Matsumoto, S. Kamado, T. Honma, and Y. Kojima, “Effect of preaging treatment on microstructure and mechanical properties of hot compressed Mg9Al1Zn alloy,” Materials Science and Engineering A, vol. 517, no. 12, pp. 354–360, 2009. View at: Publisher Site  Google Scholar
 W.J. Lai, Y.Y. Li, Y.F. Hsu, S. Trong, and W.H. Wang, “Aging behaviour and precipitate morphologies in Mg7.7Al0.5Zn0.3Mn (wt.%) alloy,” Journal of Alloys and Compounds, vol. 476, no. 12, pp. 118–124, 2009. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2015 AbdelWahab ElMorsy and Ahmed I. Z. Farahat. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.