Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2015 (2015), Article ID 185860, 12 pages
http://dx.doi.org/10.1155/2015/185860
Research Article

Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization

The University of Aizu, Tsuruga, Ikki-machi, Aizuwakamatsu, Fukushima 965-8580, Japan

Received 16 April 2014; Revised 2 September 2014; Accepted 20 October 2014

Academic Editor: Ahmad T. Azar

Copyright © 2015 Yan Pei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Caldwell and V. S. Johnston, “Tracking a criminal suspect through face-space with a genetic algorithm,” in Proceedings of the 4th International Conference on Genetic Algorithm, pp. 416–421, Morgan Kaufmann, San Diego, Calif, USA, 1991. View at Google Scholar
  2. K. Sims, “Ariticial evolution for computer graphic,” in Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '91), pp. 319–328, 1991.
  3. M. Herdy, “Evolutionary optimisation based on subjective selection—evolving blends of coffee,” in Proceedings of the 5th European Congress on Intelligent Techniques and Soft Computing (EUFIT '97), pp. 640–644, Aachen, Germany, 1997.
  4. A. Kosorukoff, “Human based genetic algorithm,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 3464–3469, Tucson, Ariz, USA, October 2001. View at Scopus
  5. H. Takagi, “Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation,” Proceedings of the IEEE, vol. 89, no. 9, pp. 1275–1296, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Sun, D. Gong, Y. Jin, and S. Chen, “A new surrogate-assisted interactive genetic algorithm with weighted semisupervised learning,” IEEE Transactions on Cybernetics, vol. 43, no. 2, pp. 685–698, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Sun, D. Gong, and W. Zhang, “Interactive genetic algorithms with large population and semi-supervised learning,” Applied Soft Computing, vol. 12, no. 9, pp. 3004–3013, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Gong, X. Ji, J. Sun, and X. Sun, “Interactive evolutionary algorithms with decision-maker's preferences for solving interval multi-objective optimization problems,” Neurocomputing, vol. 137, pp. 241–251, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Pei and H. Takagi, “A survey on accelerating evolutionary computation approaches,” in Proceedings of the International Conference of Soft Computing and Pattern Recognition (SoC-PaR '11), pp. 201–206, Dalian, China, 2011.
  10. Y. Pei and H. Takagi, “Comparative study on fitness landscape approximation with fourier transform,” in Proceedings of the 6th International Conference on Genetic and Evolutionary Computing (ICGEC '12), pp. 400–403, IEEE, Kitakyushu, Japan, August 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Pei and H. Takagi, “Fourier analysis of the fitness landscape for evolutionary search acceleration,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC '12), pp. 1–7, June 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Takagi, T. Ingu, and K. Ohnishi, “Accelerating a GA convergence by fitting a single-peak function,” Journal of Japan Society for Fuzzy Theory and Intelligent Informatics, vol. 15, no. 2, pp. 219–229, 1993. View at Google Scholar
  13. Y. Pei and H. Takagi, “Accelerating evolutionary computation with elite obtained in projected one-dimensional spaces,” in Proceedings of the 5th International Conference on Genetic and Evolutionary Computing (ICGEC '11), pp. 89–92, Jimmen, Taiwan, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Pei and H. Takagi, “Accelerating IEC and EC searches with elite obtained by dimensionality reduction in regression spaces,” Evolutionary Intelligence, vol. 6, no. 1, pp. 27–40, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Pei, K. Chao, B. Fu, Y. J. Lin, H. Chen, and Y. Xu, “Method and system for determining recommended passage place sequence,” CN Patent 102158799(B), 2013.
  16. Y. Pei and H. Takagi, “A novel traveling salesman problem solution by accelerated evolutionary computation with approximated cost matrix in an industrial application,” in Proceedings of the International Conference of Soft Computing and Pattern Recognition (SoCPaR '11), pp. 39–44, IEEE, October 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. W. R. Ashby, An Introduction to Cybernetics, Chapman & Hall, London, UK, 1956. View at MathSciNet
  18. E. Law and L. von Ahn, Human Computation, Synthesis Lectures on Artificial Intelligence and Machine Learning, 2011.
  19. H. Takagi, “Interactive evolutionary computation for analyzing human awareness mechanisms,” Applied Computational Intelligence and Soft Computing, vol. 2012, Article ID 694836, 8 pages, 2012. View at Publisher · View at Google Scholar
  20. A. M. Turing, “On computab le numbers, with an application to the entscheidungsproblem,” Proceedings of the London Mathematical Society, vol. 42, no. 2, pp. 230–265, 1936. View at Publisher · View at Google Scholar · View at MathSciNet
  21. S. K. Card, T. P. Moran, and A. Newell, “The model human processor: an engineering model of human performance,” in Handbook of Human Perception, vol. 2, pp. 1–35, 1986. View at Google Scholar
  22. Y. Zhao, X. Wang, M. Goubran, T. Whalen, and E. M. Petriu, “Human emotion and cognition recognition from body language of the head using soft computing techniques,” Journal of Ambient Intelligence and Humanized Computing, vol. 4, no. 1, pp. 121–140, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. M. C. Finlay, L. Xu, P. Taggart, B. Hanson, and P. D. Lambiase, “Bridging the gap between computation and clinical biology: validation of cable theory in humans,” Frontiers in Physiology, vol. 4, article 213, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Chandrasekaran, L. Lemus, A. Trubanova, M. Gondan, and A. A. Ghazanfar, “Monkeys and humans share a common computation for face/voice integration,” PLoS Computational Biology, vol. 7, no. 9, Article ID e1002165, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Whiten, “Humans are not alone in computing how others see the world,” Animal Behaviour, vol. 86, no. 2, pp. 213–221, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Pei, “Chaotic evolution: fusion of chaotic ergodicity and evolutionary iteration for optimization,” Natural Computing, vol. 13, no. 1, pp. 79–96, 2014. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  27. P. Naur, “Computing versus human thinking,” Communications of the ACM, vol. 50, no. 1, pp. 85–94, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Pei and H. Takagi, “Fitness landscape approximation by adaptive support vector regression with opposition-based learning,” in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC '13), pp. 1329–1334, October 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “Theoretical foundations of the potential function method in pattern recognition learning,” Automation and Remote Control, vol. 25, no. 6, pp. 821–837, 1964. View at Google Scholar
  30. J. Mercer, “Functions of positive and negative type, and their connection with the theory of integral equations,” Philosophical Transactions of the Royal Society of London. Series A. Containing Papers of a Mathematical or Physical Character, vol. 209, pp. 415–446, 1909. View at Google Scholar
  31. R. Herbrich, Ed., Learning Kernel Classifers: Theory and Algorithms, The MIT Press, Cambridge, Mass, USA, 2001.
  32. B. Schoelkopf, A. Smola, and K.-R. Mueller, “Nonlinear component analysis as a kernel eigenvalue problem,” Tech. Rep., Max-Planck-Institut für biologische Kybernetik Arbeitsgruppe Bülthoff, 1996. View at Google Scholar
  33. C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 121–167, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Schoelkopf, C. J. C. Buger, and A. Smola, Eds., Advances in Kernel Methods: Support Vector Learning, The MIT Press, Cambridge, Mass, USA, 1998.
  35. M. K. Maiti and M. Maiti, “Multi-item shelf-space allocation of breakable items via genetic algorithm,” Journal of Applied Mathematics and Computing, vol. 20, no. 1-2, pp. 327–343, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  36. G. A. Miller, “The magical number seven, plus or minus two: some limits on our capacity for processing information,” The Psychological Review, vol. 63, no. 2, pp. 81–97, 1956. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Takagi and D. Pallez, “Paired comparison-based interactive differential evolution,” in Proceedings of the 1st World Congress on Nature and Biologically Inspired Computing (NABIC '09), pp. 475–480, Coimbatore, India, December 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. H. Zar, Biostatistical Analysis, Pearson Prentice-Hall, Upper Saddle River, NJ, USA, 5th edition, 2007.