Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2015, Article ID 267264, 5 pages
http://dx.doi.org/10.1155/2015/267264
Research Article

Apical Extrusion of Debris Produced during Continuous Rotating and Reciprocating Motion

1Department of Operative Dentistry and Endodontics, Dental College of Pernambuco, University of Pernambuco, Avenida Gal Newton Cavalcanti 1650, Tabatinga, 54753-901 Camaragibe, PE, Brazil
2Odontologia, Unidade de Ciências Biológicas, UFCG, 58429-900 Campina Grande, PB, Brazil

Received 5 August 2015; Revised 15 September 2015; Accepted 27 September 2015

Academic Editor: Robert M. Love

Copyright © 2015 Giselle Nevares et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. F. Siqueira Jr., “Microbial causes of endodontic flare-ups,” International Endodontic Journal, vol. 36, no. 7, pp. 453–463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Tanalp and T. Güngör, “Apical extrusion of debris: a literature review of an inherent occurrence during root canal treatment,” International Endodontic Journal, vol. 47, no. 3, pp. 211–221, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. J. M. Tinoco, G. De-Deus, E. M. B. Tinoco, F. Saavedra, R. A. S. Fidel, and L. M. Sassone, “Apical extrusion of bacteria when using reciprocating single-file and rotary multifile instrumentation systems,” International Endodontic Journal, vol. 47, no. 6, pp. 560–566, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Shen, W. Qian, H. Abtin, Y. Gao, and M. Haapasalo, “Fatigue testing of controlled memory wire nickel-titanium rotary instruments,” Journal of Endodontics, vol. 37, no. 7, pp. 997–1001, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Kiefner, M. Ban, and G. De-Deus, “Is the reciprocating movement per se able to improve the cyclic fatigue resistance of instruments?” International Endodontic Journal, vol. 47, no. 5, pp. 430–436, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. L. C. M. Braga, A. C. Faria Silva, V. T. L. Buono, and M. G. de Azevedo Bahia, “Impact of heat treatments on the fatigue resistance of different rotary nickel-titanium instruments,” Journal of Endodontics, vol. 40, no. 9, pp. 1494–1497, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. ColteneEndo, File sequence step by step card, 2012, http://hyflexcm.com/DevDownloads/StepByStep_Extended.pdf.
  8. Y. Shen, J. M. Coil, H. Zhou, Y. Zheng, and M. Haapasalo, “HyFlex nickel-titanium rotary instruments after clinical use: metallurgical properties,” International Endodontic Journal, vol. 46, no. 8, pp. 720–729, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. S. W. Schneider, “A comparison of canal preparations in straight and curved root canals,” Oral Surgery, Oral Medicine, Oral Pathology, vol. 32, no. 2, pp. 271–275, 1971. View at Publisher · View at Google Scholar · View at Scopus
  10. G. L. Myers and S. Montgomery, “A comparison of weights of debris extruded apically by conventional filing and canal master techniques,” Journal of Endodontics, vol. 17, no. 6, pp. 275–279, 1991. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Y. Yeter, M. S. Evcil, L. B. Ayranci, and I. Ersoy, “Weight of apically extruded debris following use of two canal instrumentation techniques and two designs of irrigation needles,” International Endodontic Journal, vol. 46, no. 9, pp. 795–799, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Bürklein, S. Benten, and E. Schäfer, “Quantitative evaluation of apically extruded debris with different single-file systems: reciproc, F360 and OneShape versus Mtwo,” International Endodontic Journal, vol. 47, no. 5, pp. 405–409, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. G. A. De-Deus, E. J. Nogueira Leal Silva, E. J. Moreira, A. De Almeida Neves, F. G. Belladonna, and M. Tameirão, “Assessment of apically extruded debris produced by the self-adjusting file system,” Journal of Endodontics, vol. 40, no. 4, pp. 526–529, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Bürklein and E. Schäfer, “Apically extruded debris with reciprocating single-file and full-sequence rotary instrumentation systems,” Journal of Endodontics, vol. 38, no. 6, pp. 850–852, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Üstün, B. C. Çanakçi, A. N. Dinçer, O. Er, and S. Düzgün, “Evaluation of apically extruded debris associated with several Ni-Ti systems,” International Endodontic Journal, vol. 48, no. 7, pp. 701–704, 2015. View at Publisher · View at Google Scholar
  16. S. Koçak, M. M. Koçak, B. C. Sağlam, S. A. Türker, B. Sağsen, and Ö. Er, “Apical extrusion of debris using self-adjusting file, reciprocating single-file, and 2 rotary instrumentation systems,” Journal of Endodontics, vol. 39, no. 10, pp. 1278–1280, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. H.-C. Kim, S.-W. Kwak, G. S.-P. Cheung, D.-H. Ko, S.-M. Chung, and W. Lee, “Cyclic fatigue and torsional resistance of two new nickel-titanium instruments used in reciprocation motion: reciproc versus WaveOne,” Journal of Endodontics, vol. 38, no. 4, pp. 541–544, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Fidler, “Kinematics of 2 reciprocating endodontic motors: the difference between actual and set values,” Journal of Endodontics, vol. 40, no. 7, pp. 990–994, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Bürklein, K. Hinschitza, T. Dammaschke, and E. Schäfer, “Shaping ability and cleaning effectiveness of two single-file systems in severely curved root canals of extracted teeth: reciproc and WaveOne versus Mtwo and ProTaper,” International Endodontic Journal, vol. 45, no. 5, pp. 449–461, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Ninan and D. W. Berzins, “Torsion and bending properties of shape memory and superelastic nickel-titanium rotary instruments,” Journal of Endodontics, vol. 39, no. 1, pp. 101–104, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. I. D. Capar, H. Arslan, M. Akcay, and H. Ertas, “An in vitro comparison of apically extruded debris and instrumentation times with protaper universal, protaper next, twisted file adaptive, and hyflex instruments,” Journal of Endodontics, vol. 40, no. 10, pp. 1638–1641, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. I.-S. Jeon, L. S. W. Spångberg, T.-C. Yoon, R. B. Kazemi, and K.-Y. Kum, “Smear layer production by 3 rotary reamers with different cutting blade designs in straight root canals: a scanning electron microscopic study,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 96, no. 5, pp. 601–607, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. A. C. Tinaz, T. Alacam, O. Uzun, M. Maden, and G. Kayaoglu, “The effect of disruption of apical constriction on periapical extrusion,” Journal of Endodontics, vol. 31, no. 7, pp. 532–535, 2005. View at Google Scholar · View at Scopus
  24. N. M. Grande, G. Plotino, R. Pecci, R. Bedini, C. H. Pameijer, and F. Somma, “Micro-computerized tomographic analysis of radicular and canal morphology of premolars with long oval canals,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 106, no. 3, pp. e70–e76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. C. J. Ruddle, “Canal preparation: single-file shaping technique,” Dentistry Today, vol. 31, no. 1, pp. 124, 126–129, 2012. View at Google Scholar
  26. F. Xavier, G. Nevares, M. K. Romeiro, K. Gonçalves, L. Gominho, and D. Albuquerque, “Apical extrusion of debris from root canals using reciprocating files associated with two irrigation systems,” International Endodontic Journal, vol. 48, no. 7, pp. 661–665, 2015. View at Publisher · View at Google Scholar
  27. Y. Lu, R. Wang, L. Zhang et al., “Apically extruded debris and irrigant with two Ni-Ti systems and hand files when removing root fillings: a laboratory study,” International Endodontic Journal, vol. 46, no. 12, pp. 1125–1130, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. R. P. Mitchell, S.-E. Yang, and J. C. Baumgartner, “Comparison of apical extrusion of NaOCl using the EndoVac needle irrigation of root canals,” Journal of Endodontics, vol. 36, no. 2, pp. 338–341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Altundasar, E. Nagas, O. Uyanik, and A. Serper, “Debris and irrigant extrusion potential of 2 rotary systems and irrigation needles,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 112, no. 4, pp. e31–e35, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. D. R. Hachmeister, W. G. Schindler, W. A. Walker III, and D. D. Thomas, “The sealing ability and retention characteristics of mineral trioxide aggregate in a model of apexification,” Journal of Endodontics, vol. 28, no. 5, pp. 386–390, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. J. E. VandeVisse and J. D. Brilliant, “Effect of irrigation on the production of extruded material at the root apex during instrumentation,” Journal of Endodontics, vol. 1, no. 7, pp. 243–246, 1975. View at Publisher · View at Google Scholar · View at Scopus
  32. E. J. Silva, L. Sá, F. G. Belladonna et al., “Reciprocating versus rotary systems for root filling removal: assessment of the apically extruded material,” Journal of Endodontics, vol. 40, no. 12, pp. 2077–2080, 2014. View at Publisher · View at Google Scholar