Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2015, Article ID 572128, 13 pages
http://dx.doi.org/10.1155/2015/572128
Research Article

Ultrastructural Changes in Clinical and Microbiota Isolates of Klebsiella pneumoniae Carriers of Genes blaSHV, blaTEM, blaCTX-M, or blaKPC When Subject to β-Lactam Antibiotics

1Setor de Microscopia Eletrônica, Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
2Departamento de Parasitologia, Centro de Pesquisas Aggeu Magalhães (CPqAM)-Fiocruz, Avenida Professor Moraes Rego, s/n, Caixa Postal 7472, Cidade Universitária, 50670-420 Recife, PE, Brazil
3Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
4Departamento de Enfermagem, Faculdade de Ciências Humanas de Olinda (FACHO), Rod PE-015, Jatobá, 53060-775 Olinda, PE, Brazil
5Instituto de Ciências Biológicas, Universidade de Pernambuco (UPE), Rua Arnobio Marques 310, Santo Amaro, 50100-130 Recife, PE, Brazil

Received 5 June 2015; Revised 3 August 2015; Accepted 30 August 2015

Academic Editor: Paolo Ruggerone

Copyright © 2015 Dyana Leal Veras et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Mammina, C. Bonura, A. Aleo et al., “Sequence type 101 (ST101) as the predominant carbapenem-non-susceptible Klebsiella pneumoniae clone in an acute general hospital in Italy,” International Journal of Antimicrobial Agents, vol. 39, no. 6, pp. 543–545, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Hæggman, S. Löfdahl, A. Paauw, J. Verhoef, and S. Brisse, “Diversity and evolution of the class A chromosomal beta-lactamase gene in Klebsiella pneumoniae,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 7, pp. 2400–2408, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. E. Stefanova, J. Tomberg, M. Olesky, J.-V. Höltje, W. G. Gutheil, and R. A. Nicholas, “Neisseria gonorrhoeae penicillin-binding protein 3 exhibits exceptionally highy carboxypeptidase and β-lactam binding activities,” Biochemistry, vol. 42, no. 49, pp. 14614–14625, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Buijs, A. S. M. Dofferhoff, J. W. Mouton, J. H. Wagenvoort, and J. van der Meer, “Concentration-dependency of β-lactam-induced filament formation in Gram-negative bacteria,” Clinical Microbiology and Infection, vol. 14, no. 4, pp. 344–349, 2008. View at Publisher · View at Google Scholar
  5. T. Horii, M. Kobayashi, K. Sato, S. Ichiyama, and M. Ohta, “An in-vitro study of carbapenem-induced morphological changes and endotoxin release in clinical isolates of Gram-negative bacilli,” Journal of Antimicrobial Chemotherapy, vol. 41, no. 4, pp. 435–442, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. J. J. Jackson and H. Kropp, “β-lactam antibiotic-induced release of free endotoxin: in vitro comparison of penicillin-binding protein (PBP) 2-specific imipenem and PBP 3-specific ceftazidime,” Journal of Infectious Diseases, vol. 165, no. 6, pp. 1033–1041, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Robin, J. Delmas, C. Chanal, D. Sirot, J. Sirot, and R. Bonnet, “TEM-109 (CMT-5), a natural complex mutant of TEM-1 β-lactamase combining the amino acid substitutions of TEM-6 and TEM-33 (IRT-5),” Antimicrobial Agents and Chemotherapy, vol. 49, no. 11, pp. 4443–4447, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. E. C. Nelson, H. Segal, and B. G. Elisha, “Outer membrane protein alterations and blaTEM-1 variants: their role in β-lactam resistance in Klebsiella pneumoniae,” Journal of Antimicrobial Chemotherapy, vol. 52, no. 6, pp. 899–903, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. D. L. Veras, L. C. Alves, F. A. Brayner et al., “Prevalence of the blaSHV gene in Klebsiella pneumoniae Isolates obtained from hospital and community infections and from the microbiota of healthy individuals in Recife, Brazil,” Current Microbiology, vol. 62, no. 5, pp. 1610–1616, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Jacoby and K. Bush, “β-Lactamase Classification and Amino Acid Sequences for TEM, SHV and OXA Extended-Spectrum and Inhibitor Resistant Enzymes,” 2013, http://www.lahey.org/studies.
  11. M. Saladin, V. T. B. Cao, T. Lambert et al., “Diversity of CTX-M β-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals,” FEMS Microbiology Letters, vol. 209, no. 2, pp. 161–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Lascols, G. Peirano, M. Hackel, K. B. Laupland, and J. D. D. Pitout, “Surveillance and molecular epidemiology of Klebsiella pneumoniae isolates that produce carbapenemases: first report of OXA-48-like enzymes in North America,” Antimicrobial Agents and Chemotherapy, vol. 57, no. 1, pp. 130–136, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. B. F. Cress, J. A. Englaender, W. He, D. Kasper, R. J. Linhardt, and M. A. G. Koffas, “Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules,” FEMS Microbiology Reviews, vol. 38, no. 4, pp. 660–697, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Bush, P. Courvalin, G. Dantas et al., “Tackling antibiotic resistance,” Nature Reviews Microbiology, vol. 9, no. 12, pp. 894–896, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. E. B. Hirsch, B. Guo, K.-T. Chang et al., “Assessment of antimicrobial combinations for Klebsiella pneumoniae carbapenemase-producing K. pneumoniae,” Journal of Infectious Diseases, vol. 207, no. 5, pp. 786–793, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Rajeshwari, S. Nagveni, A. Oli, D. Parashar, and K. R. Chandrakanth, “Morphological changes of Klebsiella pneumoniae in response to Cefotaxime: a scanning electron microscope study,” World Journal of Microbiology and Biotechnology, vol. 25, no. 12, pp. 2263–2266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. C. S. Lopes, D. L. Veras, A. M. S. Lima, R. D. C. A. Melo, and J. Ayala, “blaCTX-M-2 and blaCTX-M-28 extended-spectrum β-lactamase genes and class 1 integrons in clinical isolates of Klebsiella pneumoniae from Brazil,” Memorias do Instituto Oswaldo Cruz, vol. 105, no. 2, pp. 163–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Clinical and Laboratory Standards Institute, “Performance standards for antimicrobial susceptibility testing: fifteenth informational supplement,” Document M100-S15, CLSI, Wayne, Pa, USA, 2010. View at Google Scholar
  19. C. Mabilat and S. Goussard, “PCR detection and identification of genes for extended-spectrum β-lactamases,” in Diagnostic Molecular Microbiology: Principles and Applications, D. H. Persing, T. F. Smith, F. C. Tenover, and T. J. White, Eds., pp. 553–559, American Society for Microbiology, Washington, DC, USA, 1993. View at Google Scholar
  20. J. K. Rasheed, C. Jay, B. Metchock et al., “Evolution of extended-spectrum β-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 3, pp. 647–653, 1997. View at Google Scholar · View at Scopus
  21. E. S. Moland, J. A. Black, J. Ourada, M. D. Reisbig, N. D. Hanson, and K. S. Thomson, “Occurrence of newer β-lactamases in Klebsiella pneumoniae isolates from 24 U.S. Hospitals,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 12, pp. 3837–3842, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. C. H. Jones, A. Ruzin, M. Tuckman, M. A. Visalli, P. J. Petersen, and P. A. Bradford, “Pyrosequencing using the single-nucleotide polymorphism protocol for rapid determination of TEM- and SHV-type extended-spectrum β-lactamases in clinical isolates and identification of the novel β-lactamase genes blaSHV-48, blaSHV-105, and blaTEM-155,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 3, pp. 977–986, 2009. View at Publisher · View at Google Scholar
  23. H. Yigit, A. M. Queenan, G. J. Anderson et al., “Novel carbapenem-hydrolyzing-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 4, pp. 1151–1161, 2001. View at Publisher · View at Google Scholar
  24. BLAST, Basic Local Alignment Search Tool, http://blast.ncbi.nlm.nih.gov/Blast.cgi.
  25. G. Adamis, M. G. Papaioannou, E. J. Giamarellos-Bourboulis, P. Gargalianos, J. Kosmidis, and H. Giamarellou, “Pharmacokinetic interactions of ceftazidime, imipenem and aztreonam with amikacin in healthy volunteers,” International Journal of Antimicrobial Agents, vol. 23, no. 2, pp. 144–149, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. J. Ahsman, E. D. Wildschut, D. Tibboel, and R. A. Mathot, “Pharmacokinetics of cefotaxime and desacetylcefotaxime in infants during extracorporeal membrane oxygenation,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 5, pp. 1734–1741, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Monteiro, A. F. Santos, M. D. Asensi, G. Peirano, and A. C. Gales, “First report of KPC-2-producing Klebsiella pneumoniae strains in Brazil,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 1, pp. 333–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Peirano, L. M. Seki, V. L. Val Passos, M. C. F. G. Pinto, L. R. Guerra, and M. D. Asensi, “Carbapenem-hydrolysing β-lactamase KPC-2 in Klebsiella pneumoniae isolated in Rio de Janeiro, Brazil,” Journal of Antimicrobial Chemotherapy, vol. 63, no. 2, pp. 265–268, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Sirot, C. Recule, E. B. Chaibi et al., “A complex mutant of TEM-1 β-lactamase with mutations encountered in both IRT-4 and extended-spectrum TEM-15, produced by an Escherichia coli clinical isolate,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 6, pp. 1322–1325, 1997. View at Google Scholar · View at Scopus
  30. A.-G. Gunkel, U. Hechler, and H. H. Martin, “State of penicillin-binding proteins and requirements for their bactericidal interaction with β-lactam antibiotics in Serratia marcescens highly resistant to extended-spectrum β-lactams,” Journal of General Microbiology, vol. 137, no. 2, pp. 243–252, 1991. View at Publisher · View at Google Scholar · View at Scopus
  31. C. R. Deloney and N. L. Schiller, “Competition of various β-lactam antibiotics for the major penicillin-binding proteins of Helicobacter pylori: antibacterial activity and effects on bacterial morphology,” Antimicrobial Agents and Chemotherapy, vol. 43, no. 11, pp. 2702–2709, 1999. View at Google Scholar · View at Scopus