Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2015 (2015), Article ID 791058, 11 pages
http://dx.doi.org/10.1155/2015/791058
Research Article

Efficient Scheduling of Scientific Workflows with Energy Reduction Using Novel Discrete Particle Swarm Optimization and Dynamic Voltage Scaling for Computational Grids

1Ponjesly College of Engineering, Nagercoil, Tamil Nadu 629003, India
2National Engineering College, Kovilpatti, Tamil Nadu 628503, India
3HPCCloud Research Laboratory, St. Xavier’s Catholic College of Engineering, Chunkankadai, Tamil Nadu 629003, India

Received 29 September 2014; Accepted 4 March 2015

Academic Editor: Kuo-Ching Ying

Copyright © 2015 M. Christobel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

One of the most significant and the topmost parameters in the real world computing environment is energy. Minimizing energy imposes benefits like reduction in power consumption, decrease in cooling rates of the computing processors, provision of a green environment, and so forth. In fact, computation time and energy are directly proportional to each other and the minimization of computation time may yield a cost effective energy consumption. Proficient scheduling of Bag-of-Tasks in the grid environment ravages in minimum computation time. In this paper, a novel discrete particle swarm optimization (DPSO) algorithm based on the particle’s best position (pbDPSO) and global best position (gbDPSO) is adopted to find the global optimal solution for higher dimensions. This novel DPSO yields better schedule with minimum computation time compared to Earliest Deadline First (EDF) and First Come First Serve (FCFS) algorithms which comparably reduces energy. Other scheduling parameters, such as job completion ratio and lateness, are also calculated and compared with EDF and FCFS. An energy improvement of up to 28% was obtained when Makespan Conservative Energy Reduction (MCER) and Dynamic Voltage Scaling (DVS) were used in the proposed DPSO algorithm.