Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2016, Article ID 2752836, 7 pages
http://dx.doi.org/10.1155/2016/2752836
Research Article

Profile of Trace Elements in Selected Medicinal Plants Used for the Treatment of Diabetes in Eritrea

1Department of Chemistry, College of Science, Eritrea Institute of Technology, 1056 Maekel, Eritrea
2Department of Chemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi 62000-00200, Kenya
3Department of Chemistry, School of Pharmacy, College of Health Sciences, 8566 Asmara, Eritrea
4SGS, Mineral Assay Laboratory, Bisha Mining Share Company, 4275 Asmara, Eritrea

Received 29 June 2016; Revised 12 September 2016; Accepted 15 September 2016

Academic Editor: Kazuyuki Tobe

Copyright © 2016 Mussie Sium et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Gaur and R. Agnihotri, “Trace mineral micronutrients and chronic periodontitis—a review,” Biological Trace Element Research, vol. 173, no. 397, pp. 1–14, 2016. View at Publisher · View at Google Scholar
  2. M. P. Ngugi, M. J. Njagi, M. C. Kibiti et al., “Trace elements content of selected Kenyan anti-diabetc medicinal plants research,” International Journal of Current Pharmaceutical Research, vol. 4, no. 3, pp. 39–42, 2012. View at Google Scholar
  3. D. J. Candilish, “Minerals,” Journal of the American College of Nutrition, vol. 17, pp. 286–310, 2000. View at Google Scholar
  4. A. R. Khan and F. R. Awan, “Metals in the pathogenesis of type 2 diabetes,” Journal of Diabetes and Metabolic Disorders, vol. 13, article 16, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. T. A. Clark, J. F. Deniset, C. E. Heyliger, and G. N. Pierce, “Alternative therapies for diabetes and its cardiac complications: role of vanadium,” Heart Failure Reviews, vol. 19, no. 1, pp. 123–132, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Li, Y. Tan, W. Sun et al., “The role of zinc in the prevention of diabetic cardiomyopathy and nephropathy,” Toxicologyl Mechanism Methods, vol. 23, pp. 27–33, 2013. View at Publisher · View at Google Scholar
  7. D. Purnima and L. K. Kazi, “Quantitative estimation of some essential minerals of gymnema sylvestre: a potential herb in counteracting complications of diabetes,” International Journal of Research Studies in Biosciences, vol. 3, no. 1, pp. 71–74, 2015. View at Google Scholar
  8. R. Niamat, M. A. Khan, K. Y. Khan et al., “Element content of some ethnomedicinal Ziziphus Linn. species using atomic absorption spectroscopy technique,” Journal of Applied Pharmaceutical Science, vol. 2, no. 3, pp. 96–100, 2012. View at Google Scholar · View at Scopus
  9. A. Chrzan, “Monitoring bioconcentration of potentially toxic trace elements in soils trophic chains,” Environmental Earth Sciences, vol. 75, no. 160, p. 786, 2016. View at Publisher · View at Google Scholar
  10. B. J. Bolann, R. Rahil-Khazen, H. Henriksen, R. Isrenn, and R. J. Ulvik, “Evaluation of methods for trace-element determination with emphasis on their usability in the clinical routine laboratory,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 67, no. 4, pp. 353–366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Demoz, K. Gachoki, K. Mungai, and B. Negusse, “Ethnobotanical survey and preliminary phytochemical studies of plants traditionally used for diabetes in eritrea,” European Journal of Medicinal Plants, vol. 9, no. 2, pp. 1–11, 2015. View at Publisher · View at Google Scholar
  12. R. A. M. Dhonukshe-Rutten, J. Bouwman, K. A. Brown et al., “EURRECA—evidence-based methodology for deriving micronutrient recommendations,” Critical Reviews in Food Science and Nutrition, vol. 53, no. 10, pp. 999–1040, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. EFSA, Tolerable Upper Intake Levels for Vitamins and Minerals—Scientific Committee on Food/Scientific Panel on Dietetic Products, Nutrition, Allergies, EFSA, Brussels, Belgium, 2006.
  14. ISO Guide 80, “Guidance for the in-house preparation of quality control materials (QCMs),” 2014.
  15. Y. V. Li, “Zinc and insulin in pancreatic beta-cells,” Endocrine, vol. 45, no. 2, pp. 178–189, 2014. View at Publisher · View at Google Scholar
  16. W. Maret, “Zinc biochemistry: from a single zinc enzyme to a key element of life,” Advances in Nutrition, vol. 4, no. 1, pp. 82–91, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. J. R. Brender, K. Hartman, R. P. R. Nanga et al., “Role of zinc in human islet amyloid polypeptide aggregation,” Journal of the American Chemical Society, vol. 132, no. 26, pp. 8973–8983, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Hashemipour, R. Kelishadi, J. Shapouri et al., “Effect of zinc supplementation on insulin resistance and components of the metabolic syndrome in prepubertal obese children,” Hormones, vol. 8, no. 4, pp. 279–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. M. M. Guimarães, A. C. Carvalho, and M. S. Silva, “effect of chromium supplementation on the glucose homeostasis and anthropometry of type 2 diabetic patients: double blind, randomized clinical trial,” Journal of Trace Elements in Medicine and Biology, vol. 36, pp. 65–72, 2016. View at Publisher · View at Google Scholar
  20. W. Qiao, Z. Peng, Z. Wang, J. Wei, and A. Zhou, “Chromium improves glucose uptake and metabolism through upregulating the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells,” Biological Trace Element Research, vol. 131, no. 2, pp. 133–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. W. T. Cefalu, J. Rood, P. Pinsonat et al., “Characterization of the metabolic and physiologic response to chromium supplementation in subjects with type 2 diabetes mellitus,” Metabolism: Clinical and Experimental, vol. 59, no. 5, pp. 755–762, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. K. H. Thompson and C. Orvig, “Vanadium in diabetes: 100 years from phase 0 to phase i,” Journal of Inorganic Biochemistry, vol. 100, no. 12, pp. 1925–1935, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Wiernsperger and J. Rapin, “Trace elements in glucometabolic disorders: an update,” Diabetology & Metabolic Syndrome, vol. 2, no. 1, article 70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Siddiqui, N. Bawazeer, and S. S. Joy, “Variation in macro and trace elements in progression of type 2 diabetes,” Scientific World Journal, vol. 2014, Article ID 461591, 9 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. E. S. Koh, S. J. Kim, H. E. Yoon et al., “Association of blood manganese level with diabetes and renal dysfunction: a cross-sectional study of the Korean general population,” BMC Endocrine Disorders, vol. 14, article 24, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. T. G. Kazi, H. I. Afridi, N. Kazi et al., “Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients,” Biological Trace Element Research, vol. 122, no. 1, pp. 1–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Nicoloff, K. Mutaftchiev, D. Strashimirov, and C. Petrova, “Serum manganese in children with diabetes mellitus type 1,” Diabetologia Croatica, vol. 33, no. 2, pp. 47–51, 2004. View at Google Scholar · View at Scopus
  28. A. S. Mueller and J. Pallauf, “Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice,” Journal of Nutritional Biochemistry, vol. 17, no. 8, pp. 548–560, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Steinbrenner, B. Speckmann, A. Pinto, and H. Sies, “High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism,” Journal of Clinical Biochemistry and Nutrition, vol. 48, no. 1, pp. 40–45, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Velayutharaj, R. Saraswathi, R. Shivakumar et al., “Association of serum magnesium with glycemic control and insulin resistance in patients with type 2 diabetes mellitus,” International Journal of Current Research and Review, vol. 8, no. 13, pp. 17–23, 2016. View at Publisher · View at Google Scholar
  31. D. P. Chaudhary, R. Sharma, and D. D. Bansal, “Implications of magnesium deficiency in type 2 diabetes: a review,” Biological Trace Element Research, vol. 134, no. 2, pp. 119–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Viktorínová, E. Tošerová, M. Križko, and Z. Ďuračková, “Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus,” Metabolism—Clinical and Experimental, vol. 58, no. 10, pp. 1477–1482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Swaminathan, V. A. Fonseca, M. G. Alam, and S. V. Shah, “The role of iron in diabetes and its complications,” Diabetes Care, vol. 30, no. 7, pp. 1926–1933, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Vasudevan and J. H. McNeill, “Chronic cobalt treatment decreases hyperglycemia in streptozotocin-diabetic rats,” BioMetals, vol. 20, no. 2, pp. 129–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. S. D. Mussie, P. G. Kareru, J. M. Keriko et al., “Evaluation of the anti-diabetic potential of the methanol extracts of aloe camperi, meriandra dianthera and a polyherb,” Journal of Diabetes Mellitus, vol. 5, pp. 267–276, 2015. View at Publisher · View at Google Scholar
  36. H. Vatansev, H. Ciftci, A. Ozkaya, B. Ozturk, N. Evliyaoglu, and A. Kiyici, “Chemical composition of Nigella sativa L. seeds used as a medical aromatic plant from East Anatolia Region, Turkey,” Asian Journal of Chemistry, vol. 25, no. 10, pp. 5490–5492, 2013. View at Google Scholar · View at Scopus
  37. B. Shomar, “Major and trace elements in Nigella sativa provide a potential mechanism for its healing effects,” Journal of Medicinal Plants Research, vol. 6, no. 34, pp. 4836–4843, 2012. View at Publisher · View at Google Scholar
  38. P. Rathee, A. Hooda, S. Sushila et al., “Estimation herb/spice/vegetables trace elements: north-west regional states of haryana (India),” Asian Journal of Pharmaceutical Technology and Innovation, vol. 3, no. 10, pp. 15–20, 2015. View at Google Scholar
  39. J. M. H. Anal, “Trace and essential elements analysis in Cymbopogon citratus (DC.) stapf samples by graphite furnace-atomic absorption spectroscopy and its health concern,” Journal of Toxicology, vol. 2014, Article ID 690758, 5 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Kabata-Pendias, Trace Elements in Soils and Plants, CRC Press, Boca Raton, Fla, USA, 2011.
  41. I. Khan, J. Ali, and H. Tullah, “Heavy metals determination in medicinal plant Withania somnifera growing in various areas of peshawar, NWFP, Pakistan,” Journal of the Chemical Society of Pakistan, vol. 30, no. 1, pp. 69–74, 2008. View at Google Scholar · View at Scopus
  42. World Health Organization (WHO), Quality Control Methods for Herbal Materials, Revised, WHO, Geneva, Switzerland, 2011.
  43. World Health Organization (WHO), Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues, WHO, Geneva, Switzerland, 2007.