Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2016, Article ID 9382613, 7 pages
http://dx.doi.org/10.1155/2016/9382613
Research Article

Molecular Identification and Traceability of Illegal Trading in Lignobrycon myersi (Teleostei: Characiformes), a Threatened Brazilian Fish Species, Using DNA Barcode

1Department of Biological Sciences, Universidade Estadual do Sudoeste da Bahia, Rua José Moreira Sobrinho, s/n, Bairro Jequiezinho, 45206-190 Jequié, BA, Brazil
2Institute of Coastal Studies (IECOS), Universidade Federal do Pará, Alameda Leandro Ribeiro s/n, Bairro Aldeia, 68600-000 Bragança, PA, Brazil

Received 29 June 2016; Revised 16 August 2016; Accepted 17 August 2016

Academic Editor: Jaewoo Yoon

Copyright © 2016 Alexandre dos Santos Rodrigues et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Camelier and A. M. Zanata, “Biogeography of freshwater fishes from the Northeastern Mata Atlântica freshwater ecoregion: distribution, Endemism, and area relationships,” Neotropical Ichthyology, vol. 12, no. 4, pp. 683–698, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Nogueira, P. A. Buckup, N. A. Menezes et al., “Restricted-range fishes and the conservation of Brazilian freshwaters,” PLoS ONE, vol. 5, no. 6, Article ID e11390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. M. C. Castro and R. Jucá-Chagas, “Lignobrycon myersi (Miranda-Ribeiro, 1956),” in Livro Vermelho da Fauna Brasileira Ameaçada de Extinção, Ministério do Meio Ambiente, Ed., vol. 2, pp. 75–77, Ministério do Meio Ambiente, Brasília, Brasil, 1956. View at Google Scholar
  4. R. M. C. Castro and R. P. Vari, “Moojenichthys Miranda-Ribeiro (Pisces: Ostariophysi: Characidae), a phylogenetic reappraisal and redescription,” Proceedings of the Biological Society of Washington, vol. 103, pp. 525–542, 1990. View at Google Scholar
  5. A. B. M. Machado, C. S. Martins, and G. M. Drummond, Lista da Fauna Brasileira Ameaçada de Extinção: Incluindo as Espécies Quase Ameaçadas e Deficientes em Dados, Fundação Biodiversitas, Belo Horizonte, Brazil, 2005.
  6. Ministério do Meio Ambiente, Plano Nacional de Recursos Hídricos, Ministério do Meio Ambiente, Secretaria de Recursos Hídricos (MMA), Brasília, Brazil, 2006.
  7. CEPENE—Centro de Pesquisa e Gestão de Recursos Pesqueiros do Litoral Nordeste, Boletim Estatístico da Pesca marítima e Estuarina do Nordeste do Brasil—IBAMA, CEPENE, PE, Tamandaré, Brazil, 2004.
  8. M. Woolfe and S. Primrose, “Food forensics: using DNA technology to combat misdescription and fraud,” Trends in Biotechnology, vol. 22, no. 5, pp. 222–226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Ogden, “Unlocking the potential of genomic technologies for wildlife forensics,” Molecular Ecology Resources, vol. 11, no. 1, supplement, pp. 109–116, 2011. View at Publisher · View at Google Scholar
  10. C. A. M. Palmeira, L. F. D. S. Rodrigues-Filho, J. B. D. L. Sales, M. Vallinoto, H. Schneider, and I. Sampaio, “Commercialization of a critically endangered species (largetooth sawfish, Pristis perotteti) in fish markets of northern Brazil: authenticity by DNA analysis,” Food Control, vol. 34, no. 1, pp. 249–252, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. de Brito, H. Schneider, I. Sampaio, and S. Santos, “DNA barcoding reveals high substitution rate and mislabeling in croaker fillets (Sciaenidae) marketed in Brazil: the case of ‘pescada branca’ (Cynoscion leiarchus and Plagioscion squamosissimus),” Food Research International, vol. 70, pp. 40–46, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. P. D. N. Hebert, S. Ratnasingham, and J. R. DeWaard, “Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species,” Proceedings of the Royal Society B: Biological Sciences, vol. 270, no. 1, pp. S96–S99, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. R. D. Ward, T. S. Zemlak, B. H. Innes, P. R. Last, and P. D. N. Hebert, “DNA barcoding Australia's fish species,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 360, no. 1462, pp. 1847–1857, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Zhang and R. Hanner, “Molecular approach to the identification of fish in the South China Sea,” PLoS ONE, vol. 7, no. 2, Article ID e30621, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. S. G. Brandão, J. A. Bitencourt, F. B. Santos et al., “DNA barcoding of coastal ichthyofauna from Bahia, northeastern Brazil, South Atlantic: high efficiency for systematics and identification of cryptic diversity,” Biochemical Systematics and Ecology, vol. 65, pp. 214–224, 2016. View at Publisher · View at Google Scholar
  16. C. Oliveira, G. S. Avelino, K. T. Abe et al., “Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling,” BMC Evolutionary Biology, vol. 11, no. 1, article 275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. A. S. Rodrigues, A. S. Medrado, D. Diniz, C. Oliveira, and P. R. A. M. Affonso, “ZZ/ZW sex chromosome system in the endangered fish Lignobrycon myersi Miranda-Ribeiro, 1956 (Teleostei, Characiformes, Triportheidae),” Comparative Cytogenetics, vol. 10, no. 2, pp. 245–254, 2016. View at Publisher · View at Google Scholar
  18. D. C. De Carvalho, D. A. A. Oliveira, P. S. Pompeu, C. G. Leal, C. Oliveira, and R. Hanner, “Deep barcode divergence in Brazilian freshwater fishes: the case of the São Francisco River basin,” Mitochondrial DNA, vol. 22, no. 1, pp. 80–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. L. H. G. Pereira, R. Hanner, F. Foresti, and C. Oliveira, “Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna?” BMC Genetics, vol. 14, article 20, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ardura, I. G. Pola, I. Ginuino, V. Gomes, and E. Garcia-Vazquez, “Application of barcoding to Amazonian commercial fish labelling,” Food Research International, vol. 43, no. 5, pp. 1549–1552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. N. V. Ivanova, T. S. Zemlak, R. H. Hanner, and P. D. N. Hebert, “Universal primer cocktails for fish DNA barcoding,” Molecular Ecology Notes, vol. 7, no. 4, pp. 544–548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. A. Hall, “BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT,” Nucleic Acids Symposium Series, vol. 41, pp. 95–98, 1999. View at Google Scholar
  23. J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987. View at Google Scholar · View at Scopus
  26. M. Kimura, “A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences,” Journal of Molecular Evolution, vol. 16, no. 2, pp. 111–120, 1980. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. F. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, no. 4, pp. 783–791, 1985. View at Publisher · View at Google Scholar
  29. J. P. Huelsenbeck and F. Ronquist, “MrBayes: Bayesian inference of phylogenetic trees,” Bioinformatics, vol. 17, no. 8, pp. 754–755, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, “JModelTest 2: more models, new heuristics and parallel computing,” Nature Methods, vol. 9, no. 8, p. 772, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Zhang, P. Kapli, P. Pavlidis, and A. Stamatakis, “A general species delimitation method with applications to phylogenetic placements,” Bioinformatics, vol. 29, no. 22, pp. 2869–2876, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. J. C. Barrett, B. Fry, J. Maller, and M. J. Daly, “Haploview: analysis and visualization of LD and haplotype maps,” Bioinformatics, vol. 21, no. 2, pp. 263–265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Rozas, P. Librado, J. C. Sánchez-Delbarrio, X. Messeguer, and R. Rozas, “DnaSP, DNA Sequence Polymorphism version 5.10. Universitat de Barcelona,” 2010, http://www.ub.edu/dnasp/.
  34. P. D. N. Hebert, E. H. Penton, J. M. Burns, D. H. Janzen, and W. Hallwachs, “Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 41, pp. 14812–14817, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Ogden, “Fisheries forensics: the use of DNA tools for improving compliance, traceability and enforcement in the fishing industry,” Fish and Fisheries, vol. 9, no. 4, pp. 462–472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Frézal and R. Leblois, “Four years of DNA barcoding: current advances and prospects,” Infection, Genetics and Evolution, vol. 8, no. 5, pp. 727–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. D. C. Benzaquem, C. Oliveira, J. S. Batista, J. Zuanon, and J. I. R. Porto, “DNA barcoding in pencilfishes (Lebiasinidae: Nannostomus) reveals cryptic diversity across the Brazilian Amazon,” PLoS ONE, vol. 10, no. 2, article e0112217, 2015. View at Publisher · View at Google Scholar · View at Scopus
  38. L. C. Gomes, T. C. Pessali, N. G. Sales, P. S. Pompeu, and D. C. Carvalho, “Integrative taxonomy detects cryptic and overlooked fish species in a Neotropical river basin,” Genetica, vol. 143, no. 5, pp. 581–588, 2015. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Cetra, L. M. Sarmento-Soares, and R. F. Martins-Pinheiro, “Peixes de riachos e novas Unidades de Conservação no sul da Bahia,” Pan-American Journal of Aquatic Sciences, vol. 5, pp. 11–21, 2010. View at Google Scholar
  40. A. M. Zanata and P. Camelier, “Astyanax vermilion and Astyanax burgerai: new characid fishes (Ostariophysi: Characiformes) from Northeastern Bahia, Brazil,” Neotropical Ichthyology, vol. 7, no. 2, pp. 175–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. S. Medrado, P. R. A. M. Affonso, P. L. S. Carneiro, M. R. Vicari, R. F. Artoni, and M. A. Costa, “Allopatric divergence in Astyanax aff. fasciatus Cuvier, 1819 (Characidae, Incertae sedis) inferred from DNA mapping and chromosomes,” Zoologischer Anzeiger, vol. 257, pp. 119–129, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. I. A. Oliveira, L. A. Argolo, J. D. A. Bitencourt, D. Diniz, M. R. Vicari, and P. R. A. D. M. Affonso, “Cryptic chromosomal diversity in the complex ‘Geophagusbrasiliensis (Perciformes, Cichlidae),” Zebrafish, vol. 13, no. 1, pp. 33–44, 2016. View at Publisher · View at Google Scholar · View at Scopus