The Scientific World Journal: Agronomy The latest articles from Hindawi © 2017 , Hindawi Limited . All rights reserved. Effect of Harvesting Stage on Sweet Sorghum (Sorghum bicolor L.) Genotypes in Western Kenya Wed, 01 Feb 2017 09:55:49 +0000 Harvesting stage of sweet sorghum (Sorghum bicolor L. Moench) cane is an important aspect in the content of sugar for production of industrial alcohol. Four sweet sorghum genotypes were evaluated for harvesting stage in a randomized complete block design. In order to determine sorghum harvest growth stage for bioethanol production, sorghum canes were harvested at intervals of seven days after anthesis. The genotypes were evaluated at different stages of development for maximum production of bioethanol from flowering to physiological maturity. The canes were crushed and juice fermented to produce ethanol. Measurements of chlorophyll were taken at various stages as well as panicles from the harvested canes. Dried kernels at 14% moisture content were also weighed at various stages. Chlorophyll, grain weight, absolute ethanol volume, juice volume, cane yield, and brix showed significant () differences for genotypes as well as the stages of harvesting. Results from this study showed that harvesting sweet sorghum at stages IV and V (104 to 117 days after planting) would be appropriate for production of kernels and ethanol. EUSS10 has the highest ethanol potential (1062.78 l ha−1) due to excellent juice volume (22976.9 l ha−1) and EUSS11 (985.26 l ha−1) due to its high brix (16.21). Moses Owuor Oyier, James O. Owuoche, Maurice E. Oyoo, Erick Cheruiyot, Betty Mulianga, and Justice Rono Copyright © 2017 Moses Owuor Oyier et al. All rights reserved. Adaptability and Stability Study of Selected Sweet Sorghum Genotypes for Ethanol Production under Different Environments Using AMMI Analysis and GGE Biplots Thu, 29 Sep 2016 08:52:22 +0000 The genotype and environment interaction influences the selection criteria of sorghum (Sorghum bicolor) genotypes. Eight sweet sorghum genotypes were evaluated at five different locations in two growing seasons of 2014. The aim was to determine the interaction between genotype and environment on cane, juice, and ethanol yield and to identify best genotypes for bioethanol production in Kenya. The experiments were conducted in a randomized complete block design replicated three times. Sorghum canes were harvested at hard dough stage of grain development and passed through rollers to obtain juice that was then fermented to obtain ethanol. Cane, juice, and ethanol yield was analyzed using the additive main effect and multiplication interaction model (AMMI) and genotype plus genotype by environment (GGE) biplot. The combined analysis of variance of cane and juice yield of sorghum genotypes showed that sweet sorghum genotypes were significantly () affected by environments (E), genotypes (G) and genotype by environment interaction (GEI). GGE biplot showed high yielding genotypes EUSS10, ACFC003/12, SS14, and EUSS11 for cane yield; EUSS10, EUSS11, and SS14 for juice yield; and EUSS10, SS04, SS14, and ACFC003/12 for ethanol yield. Genotype SS14 showed high general adaptability for cane, juice, and ethanol yield. Justice Kipkorir Rono, Erick Kimutai Cheruiyot, Jacktone Odongo Othira, Virginia Wanjiku Njuguna, Joseph Kinyoro Macharia, James Owuoche, Moses Oyier, and Alex Machio Kange Copyright © 2016 Justice Kipkorir Rono et al. All rights reserved. Corrigendum to “Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content” Thu, 28 Jul 2016 15:13:40 +0000 Aspasia Efthimiadou, Nikolaos Katsenios, Anestis Karkanis, Panayiota Papastylianou, Vassilios Triantafyllidis, Ilias Travlos, and Dimitrios J. Bilalis Copyright © 2016 Aspasia Efthimiadou et al. All rights reserved. An Economic Analysis of Pigeonpea Seed Production Technology and Its Adoption Behavior: Indian Context Wed, 13 Jul 2016 11:31:40 +0000 The present study was based on primary data collected from 100 farmers in Gulbarga district of Karnataka, India, during the agricultural year 2013-2014. Study shows that average land holding size of pigeonpea seed farmers was higher in comparison to grain farmers and district average. The study illustrates a ratio of 32 : 68 towards fixed and variable costs in pigeonpea certified seed production with a total cost of 39436 and the gross and net returns were 73300 and 33864 per hectare, respectively. The total cost of cultivation, gross return, and net return in pigeonpea seed production were higher by around 23, 32, and 44 percent than grain production, respectively. Hence, production of certified seed has resulted in a win-win situation for the farmers with higher yield and increased returns. The decision of the farmer on adoption of seed production technology was positively influenced by his education, age, land holding, irrigated land, number of crops grown, and extension contacts while family size was influencing negatively. Higher yield and profitability associated with seed production can be effectively popularized among farmers, resulting in increased certified seed production. Govind Pal, Radhika Channanamchery, R. K. Singh, Udaya Bhaskar Kethineni, H. Ram, and S. Rajendra Prasad Copyright © 2016 Govind Pal et al. All rights reserved. Genetic Analysis of Reduced γ-Tocopherol Content in Ethiopian Mustard Seeds Thu, 05 May 2016 07:08:06 +0000 Ethiopian mustard (Brassica carinata A. Braun) line BCT-6, with reduced γ-tocopherol content in the seeds, has been previously developed. The objective of this research was to conduct a genetic analysis of seed tocopherols in this line. BCT-6 was crossed with the conventional line C-101 and the , , and BC plant generations were analyzed. Generation mean analysis using individual scaling tests indicated that reduced γ-tocopherol content fitted an additive-dominant genetic model with predominance of additive effects and absence of epistatic interactions. This was confirmed through a joint scaling test and additional testing of the goodness of fit of the model. Conversely, epistatic interactions were identified for total tocopherol content. Estimation of the minimum number of genes suggested that both γ- and total tocopherol content may be controlled by two genes. A positive correlation between total tocopherol content and the proportion of γ-tocopherol was identified in the generation. Additional research on the feasibility of developing germplasm with high tocopherol content and reduced concentration of γ-tocopherol is required. Elena García-Navarro, José M. Fernández-Martínez, Begoña Pérez-Vich, and Leonardo Velasco Copyright © 2016 Elena García-Navarro et al. All rights reserved. Assessment of the Economic Structure of Brazilian Agribusiness Tue, 03 May 2016 08:52:39 +0000 This paper presents an economic assessment of Brazilian agribusiness and its relationship with other economic sectors. It was found that, in 2011, agribusiness had a share of 18.45% (basic prices) and 19.77% (market prices) of Brazilian GDP. The tax burden of agribusiness (20.68%) was higher than that of other sectors (13.59%), despite agribusiness being a major contributor to the generation of foreign exchange, employment, and essential products, such as food. Brazilian agribusiness is a major employer, responsible for 29.39% of national employment. However, its average income is lower than in the other sectors of the Brazilian economy. Finally, agribusiness was found to be the biggest generator of foreign exchange, with a positive balance of trade. It was possible to conclude that agribusiness forms a strong link between agriculture and livestock, industry, and services in other economic sectors. For this reason, it can be said that the development of agribusiness is highly relevant to the process of Brazilian economic development and is therefore important to the progress of economic policies. Vilmar Rodrigues Moreira, Ricardo Kureski, and Claudimar Pereira da Veiga Copyright © 2016 Vilmar Rodrigues Moreira et al. All rights reserved. Diversity, Physicochemical and Technological Characterization of Elite Cassava (Manihot esculenta Crantz) Cultivars of Bantè, a District of Central Benin Sun, 29 Nov 2015 13:32:34 +0000 Cassava is one of the staple food crops contributing significantly to food and nutrition security in Benin. This study aimed to assess the diversity of the elite cassava cultivars of Bantè district, determine the physicochemical properties of the most preferred ones as well as the sensory attributes of their major derived products (gari and tapioca), and compare them with the farmers’ and processors’ perception on their technological qualities. The ethnobotanical investigation revealed existence of 40 cultivars including 9 elites that were further classified into three groups based on agronomics and technological and culinary properties. Clustered together, cultivars Idilèrou, Monlèkangan, and Odohoungbo characterized by low fiber content, high yield of gari and tapioca, and good in-ground postmaturity storage were the most preferred ones. Their physicochemical analysis revealed good rate of dry matters (39.8% to 41.13%), starch (24.47% to 25.5%) and total sugars (39.46% to 41.13%), low fiber (0.80% to 1.02%), and cyanide (50 mg/kg) contents. The sensory analysis of their gari and tapioca revealed very well appreciated (taste, color, and texture) products by the consumers. The confirmation by scientific analysis of the farmers’ perception on qualities of the most preferred cultivars indicated that they have good knowledge of their materials. Abadjayé Faouziath Sanoussi, Laura Yéyinou Loko, Hyacinthe Ahissou, Adidjath Koubourath Adjahi, Azize Orobiyi, Angelot Paterne Agré, Paulin Azokpota, Alexandre Dansi, and Ambaliou Sanni Copyright © 2015 Abadjayé Faouziath Sanoussi et al. All rights reserved. Transcriptome Analysis of Gelatin Seed Treatment as a Biostimulant of Cucumber Plant Growth Thu, 08 Oct 2015 06:35:39 +0000 The beneficial effects of gelatin capsule seed treatment on enhanced plant growth and tolerance to abiotic stress have been reported in a number of crops, but the molecular mechanisms underlying such effects are poorly understood. Using mRNA sequencing based approach, transcriptomes of one- and two-week-old cucumber plants from gelatin capsule treated and nontreated seeds were characterized. The gelatin treated plants had greater total leaf area, fresh weight, frozen weight, and nitrogen content. Pairwise comparisons of the RNA-seq data identified 620 differentially expressed genes between treated and control two-week-old plants, consistent with the timing when the growth related measurements also showed the largest differences. Using weighted gene coexpression network analysis, significant coexpression gene network module of 208 of the 620 differentially expressed genes was identified, which included 16 hub genes in the blue module, a NAC transcription factor, a MYB transcription factor, an amino acid transporter, an ammonium transporter, a xenobiotic detoxifier-glutathione S-transferase, and others. Based on the putative functions of these genes, the identification of the significant WGCNA module and the hub genes provided important insights into the molecular mechanisms of gelatin seed treatment as a biostimulant to enhance plant growth. H. T. Wilson, K. Xu, and A. G. Taylor Copyright © 2015 H. T. Wilson et al. All rights reserved. Florivory Modulates the Seed Number-Seed Weight Relationship in Halenia elliptica (Gentianaceae) Thu, 01 Oct 2015 11:16:34 +0000 Generally, plant reproductive success might be affected negatively by florivory, and the effects may vary depending on the timing and intensity of florivory. To clarify the impacts of florivory by the sawfly larvae (Tenthredinidae) on seed production of Halenia elliptica D. Don, we simulated florivory by removing different proportion of flowers at three reproductive stages in this alpine herb and then examined the seed number per fruit, the seed weight, and the seed mass per fruit of the remaining flowers. Seed number per fruit reduced significantly when flowers were removed at flowering and fruiting stages or when 15% and 60% of flowers were removed. However, seed weight increased significantly after flowers were removed, independent of treatments of reproductive stage and proportion. There was a similar seed mass per fruit between the plants subjected to simulation of florivory and control. The results indicated that florivory modulated the seed number-seed weight relationship in this alpine species. Our study suggested that selective seed abortion and resource reallocation within fruits may ensure fewer but larger seeds, which were expected to be adaptive in the harsh environments. Linlin Wang, Lihua Meng, and Jian Luo Copyright © 2015 Linlin Wang et al. All rights reserved. Tomato Seed Coat Permeability to Selected Carbon Nanomaterials and Enhancement of Germination and Seedling Growth Thu, 01 Oct 2015 08:33:18 +0000 Seed coat permeability was examined using a model that tested the effects of soaking tomato (Solanum lycopersicon) seeds in combination with carbon-based nanomaterials (CBNMs) and ultrasonic irradiation (US). Penetration of seed coats to the embryo by CBNMs, as well as CBNMs effects on seed germination and seedling growth, was examined. Two CBNMs, C60(OH)20 (fullerol) and multiwalled nanotubes (MWNTs), were applied at 50 mg/L, and treatment exposure ranged from 0 to 60 minutes. Bright field, fluorescence, and electron microscopy and micro-Raman spectroscopy provided corroborating evidence that neither CBNM was able to penetrate the seed coat. The restriction of nanomaterial (NM) uptake was attributed to the semipermeable layer located at the innermost layer of the seed coat adjacent to the endosperm. Seed treatments using US at 30 or 60 minutes in the presence of MWNTs physically disrupted the seed coat; however, the integrity of the semipermeable layer was not impaired. The germination percentage and seedling length and weight were enhanced in the presence of MWNTs but were not altered by C60(OH)20. The combined exposure of seeds to NMs and US provided insight into the nanoparticle-seed interaction and may serve as a delivery system for enhancing seed germination and early seedling growth. Tatsiana A. Ratnikova, Ramakrishna Podila, Apparao M. Rao, and Alan G. Taylor Copyright © 2015 Tatsiana A. Ratnikova et al. All rights reserved. TDR Technique for Estimating the Intensity of Evapotranspiration of Turfgrasses Thu, 10 Sep 2015 08:45:36 +0000 The paper presents a method for precise estimation of evapotranspiration of selected turfgrass species. The evapotranspiration functions, whose domains are only two relatively easy to measure parameters, were developed separately for each of the grass species. Those parameters are the temperature and the volumetric moisture of soil at the depth of 2.5 cm. Evapotranspiration has the character of a modified logistic function with empirical parameters. It assumes the form , where: is evapotranspiration [mm·h−1], is volumetric moisture of soil at the depth of 2.5 cm [m3·m−3], is soil temperature at the depth of 2.5 cm [°C], and A, B, and C are empirical coefficients calculated individually for each of the grass species [mm·h1], and [—], [(m3·m−3·°C)−1]. The values of evapotranspiration calculated on the basis of the presented function can be used as input data for the design of systems for the automatic control of irrigation systems ensuring optimum moisture conditions in the active layer of lawn swards. Grzegorz Janik, Karol Wolski, Anna Daniel, Małgorzata Albert, Wojciech Skierucha, Andrzej Wilczek, Paweł Szyszkowski, and Amadeusz Walczak Copyright © 2015 Grzegorz Janik et al. All rights reserved. Coapplication of Chicken Litter Biochar and Urea Only to Improve Nutrients Use Efficiency and Yield of Oryza sativa L. Cultivation on a Tropical Acid Soil Mon, 27 Jul 2015 12:31:28 +0000 The excessive use of nitrogen (N) fertilizers in sustaining high rice yields due to N dynamics in tropical acid soils not only is economically unsustainable but also causes environmental pollution. The objective of this study was to coapply biochar and urea to improve soil chemical properties and productivity of rice. Biochar (5 t ha−1) and different rates of urea (100%, 75%, 50%, 25%, and 0% of recommended N application) were evaluated in both pot and field trials. Selected soil chemical properties, rice plants growth variables, nutrient use efficiency, and yield were determined using standard procedures. Coapplication of biochar with 100% and 75% urea recommendation rates significantly increased nutrients availability (especially P and K) and their use efficiency in both pot and field trials. These treatments also significantly increased rice growth variables and grain yield. Coapplication of biochar and urea application at 75% of the recommended rate can be used to improve soil chemical properties and productivity and reduce urea use by 25%. Ali Maru, Osumanu Ahmed Haruna, and Walter Charles Primus Copyright © 2015 Ali Maru et al. All rights reserved. Chemical Diversity in Lippia alba (Mill.) N. E. Brown Germplasm Thu, 14 May 2015 06:36:31 +0000 The aim of this study was to perform chemical characterization of Lippia alba accessions from the Active Germplasm Bank of the Federal University of Sergipe. A randomized block experimental design with two replications was applied. The analysis of the chemical composition of the essential oils was conducted using a gas chromatograph coupled to a mass spectrometer. The chemical composition of the essential oils allowed the accessions to be allocated to the following six groups: group 1: linalool, 1,8-cineole, and caryophyllene oxide; group 2: linalool, geranial, neral, 1,8-cineol, and caryophyllene oxide; group 3: limonene, carvone, and sabinene; group 4: carvone, limonene, g-muurolene, and myrcene; group 5: neral, geranial, and caryophyllene oxide; and group 6: geranial, neral, o-cymene, limonene, and caryophyllene oxide. Arie Fitzgerald Blank, Lídia Cristina Alves Camêlo, Maria de Fátima Arrigoni-Blank, José Baldin Pinheiro, Thiago Matos Andrade, Edenilson dos Santos Niculau, and Péricles Barreto Alves Copyright © 2015 Arie Fitzgerald Blank et al. All rights reserved. Response of Sugarcane in a Red Ultisol to Phosphorus Rates, Phosphorus Sources, and Filter Cake Mon, 11 May 2015 09:29:24 +0000 We evaluated the effect of phosphorus application rates from various sources and in the presence or absence of filter cake on soil phosphorus, plant phosphorus, changes in acid phosphatase activity, and sugarcane productivity grown in Eutrophic Red Ultisol. Three P sources were used (triple superphosphate, Araxa rock phosphate, and Bayovar rock phosphate) and four application rates (0, 90, 180, and 360 kg ha−1 of P2O5) in the presence or absence of filter cake (7.5 t ha−1, dry basis). The soil P, the accumulated plant P, the leaf acid phosphatase activity and straw, the stalk productivity, the concentration of soluble solids in the juice (Brix), the juice sucrose content (Pol), and the purity were the parameters evaluated. We found that P applications increased levels of soil, leaf, and juice phosphorus and led to higher phosphorus accumulation and greater stalk and straw productivity. These levels were highest in the presence of filter cake. Acid phosphatase activity decreased with increasing plant phosphorus concentration. Phosphate fertilization did not show effect on sugarcane technological quality. We concluded that P application, regardless of source, improved phosphorus nutrition and increased productivity in sugarcane and, when associated with filter cake, reduced the need for mineral fertilizer. Gustavo Caione, Renato de Mello Prado, Cid Naudi Silva Campos, Leandro Rosatto Moda, Ricardo de Lima Vasconcelos, and João Martins Pizauro Júnior Copyright © 2015 Gustavo Caione et al. All rights reserved. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances Tue, 21 Apr 2015 11:10:21 +0000 High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. Perumal Palanivell, Osumanu Haruna Ahmed, Nik Muhamad Ab Majid, Mohamadu Boyie Jalloh, and Kasim Susilawati Copyright © 2015 Perumal Palanivell et al. All rights reserved. Calibration and Algorithm Development for Estimation of Nitrogen in Wheat Crop Using Tractor Mounted N-Sensor Tue, 24 Feb 2015 13:42:03 +0000 The experiment was planned to investigate the tractor mounted N-sensor (Make Yara International) to predict nitrogen (N) for wheat crop under different nitrogen levels. It was observed that, for tractor mounted N-sensor, spectrometers can scan about 32% of total area of crop under consideration. An algorithm was developed using a linear relationship between sensor sufficiency index () and to calculate the as a function of . There was a strong correlation among sensor attributes (sensor value, sensor biomass, and sensor NDVI) and different N-levels. It was concluded that tillering stage is most prominent stage to predict crop yield as compared to the other stages by using sensor attributes. The algorithms developed for tillering and booting stages are useful for the prediction of N-application rates for wheat crop. N-application rates predicted by algorithm developed and sensor value were almost the same for plots with different levels of N applied. Manjeet Singh, Rajneesh Kumar, Ankit Sharma, Bhupinder Singh, and S. K. Thind Copyright © 2015 Manjeet Singh et al. All rights reserved. Genetic Divergence in Northern Benin Sorghum (Sorghum bicolor L. Moench) Landraces as Revealed by Agromorphological Traits and Selection of Candidate Genotypes Sun, 01 Feb 2015 12:09:45 +0000 Sorghum [Sorghum bicolor (L.) Moench] is an important staple food crop in northern Benin. In order to assess its diversity in Benin, 142 accessions of landraces collected from Northern Benin were grown in Central Benin and characterised using 10 qualitative and 14 quantitative agromorphological traits. High variability among both qualitative and quantitative traits was observed. Grain yield (0.72–10.57 tons/ha), panicle weight (15–215.95 g), days to 50% flowering (57–200 days), and plant height (153.27–636.5 cm) were among traits that exhibited broader variability. Correlations between quantitative traits were determined. Grain yield for instance exhibited highly positive association with panicle weight and 100 seed weight . UPGMA cluster analysis classified the 142 accessions into 89 morphotypes. Based on multivariate analysis, twenty promising sorghum genotypes were selected. Among them, AT41, AT14, and AT29 showed early maturity (57 to 66 days to 50% flowering), high grain yields (4.85 to 7.85 tons/ha), and shorter plant height (153.27 to 180.37 cm). The results obtained will help enhancing sorghum production and diversity and developing new varieties that will be better adapted to the current soil and climate conditions in Benin. Innocent Dossou-Aminon, Laura Yêyinou Loko, Arlette Adjatin, Eben-Ezer B. K. Ewédjè, Alexandre Dansi, Sujay Rakshit, Ndiaga Cissé, Jagannath Vishnu Patil, Clément Agbangla, Ambaliou Sanni, Akpovi Akoègninou, and Koffi Akpagana Copyright © 2015 Innocent Dossou-Aminon et al. All rights reserved. Effects of Boron Nutrition and Water Stress on Nitrogen Fixation, Seed δ15N and δ13C Dynamics, and Seed Composition in Soybean Cultivars Differing in Maturities Sun, 18 Jan 2015 06:19:34 +0000 Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG) cultivars. Plants were well-watered with no foliar B (W − B), well-watered with foliar B (W + B), water-stressed with no foliar B (WS − B), and water-stressed with foliar B (WS + B). Foliar B was applied at rate of 0.45 kg·ha−1 and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W − B, WS + B, and WS − B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS − B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ15N and δ13C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use 15N/14N and 13C/12C ratios and stachyose to select for drought tolerance soybean. Nacer Bellaloui and Alemu Mengistu Copyright © 2015 Nacer Bellaloui and Alemu Mengistu. All rights reserved. Chemical Diversity in Basil (Ocimum sp.) Germplasm Thu, 01 Jan 2015 14:29:50 +0000 The present study aimed to chemically characterize 31 accessions and seven cultivars of basil. The percentage composition of the essential oils of the accessions and cultivars was based on the 14 most abundant constituents: 1,8-cineole, linalool, methyl chavicol, neral, nerol, geraniol, geranial, methyl cinnamate, β-bourbonene, methyl eugenol, α-trans-bergamotene, germacrene-D, epi-α-cadinol, and δ-cadinene. The genetic materials were classified into eight clusters according to the chemical composition of the essential oils: Cluster 1—mostly linalool and 1,8-cineole; Cluster 2—mostly linalool, geraniol, and α-trans-bergamotene; Cluster 3—mostly linalool, methyl chavicol, methyl cinnamate, and β-bourbonene; Cluster 4—mostly linalool, methyl chavicol, epi-α-cadinol, and α-trans-bergamotene; Cluster 5—mainly linalool, methyl eugenol, α-trans-bergamotene, and epi-α-cadinol; Cluster 6—mainly linalool, geraniol, and epi-α-cadinol; Cluster 7—mostly linalool and methyl chavicol; Cluster 8—mainly geranial and neral. Andréa Santos da Costa, Maria de Fátima Arrigoni-Blank, José Luiz Sandes de Carvalho Filho, Aléa Dayane Dantas de Santana, Darlisson de Alexandria Santos, Péricles Barreto Alves, and Arie Fitzgerald Blank Copyright © 2015 Andréa Santos da Costa et al. All rights reserved. Selection of Superior Lentil (Lens esculenta M.) Genotypes by Assessing Character Association and Genetic Diversity Thu, 11 Dec 2014 08:05:27 +0000 Lentil is one of the most important pulse crops in the world as well as in Bangladesh. It is now considered a main component for training and body building practising in first world countries. Yield varies tremendously from year to year and location to location. Therefore, it is very important to find genotypes that perform consistently well even in ecological farming systems without any intercultural operations. Twenty lentil genotypes were tested during the period from November 2010 to March 2011 and from December 2011 to March 2012 with three replicates in each season to determine genetic variability, diversity, characters association, and selection indices for better grain yield. The experiment was conducted at the breeding field of the Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh. This study revealed that all the genotypes possess a high amount of genetic diversity. Plant height and 100-grain weight showed significant positive correlation with grain yield plant−1 that was also confirmed by path analysis as the highest direct effect on grain yield. The genotypes BM-513 and BM-941 were found to be the best performer in both the seasons and were considered as consistent genotype. The genotypes were grouped into four clusters based on Euclidean distance following Ward’s method and RAPD analysis. However, discriminant function analysis revealed a progressive increase in the efficiency of selection and BM-70 ranked as the best followed by the genotypes BM-739, BM-680, BM-185, and BM-513. These genotypes might be recommended for farmers’ cultivation in ecological farming in Bangladesh. U. K. Nath, Santona Rani, M. R. Paul, M. N. Alam, and B. Horneburg Copyright © 2014 U. K. Nath et al. All rights reserved. Erratum to “Water Management Practices Affect Arsenic and Cadmium Accumulation in Rice Grains” Thu, 27 Nov 2014 10:13:13 +0000 Liming Sun, Manman Zheng, Hongyan Liu, Shaobing Peng, Jianliang Huang, Kehui Cui, and Lixiao Nie Copyright © 2014 Liming Sun et al. All rights reserved. Effects of Plant Size, Temperature, and Light Intensity on Flowering of Phalaenopsis Hybrids in Mediterranean Greenhouses Thu, 20 Nov 2014 10:55:24 +0000 Mediterranean greenhouses for cultivation of Phalaenopsis orchids reproduce the warm, humid, and shaded environment of tropical underbrush. Heating represents the highest production cost, due to the high thermal requirements and the long unproductive phase of juvenility, in which plants attain the critical size for flowering. Our researches aimed to investigate the effect of plant size, temperature, and light intensity, during the phase of flower induction, on flowering of modern genotypes selected for Mediterranean greenhouses. Three experiments were carried out to compare (i) plant size: reduced size versus size considered optimal for flowering (hybrids “Sogo Yukidian,” “Chain Xen Diamond,” and “Pinlong”); (ii) temperature: moderate reduction of temperature versus standard thermal regime (hybrid “Premium”); (iii) light intensity: supplemental lighting versus reference light intensity (hybrid “Premium”). The premature exposure of plants to the inductive treatment delayed the beginning of flowering and reduced the flower stem quality, in all the tested hybrids. In “Premium,” the lower temperature did not affect flowering earliness and commercial quality of flower stems compared to the standard regime, whereas it promoted stem branching. In the same hybrid, supplemental lighting anticipated flowering and promoted the emission of the second stem and the stem branching, compared to the reference light regime. Roberta Paradiso and Stefania De Pascale Copyright © 2014 Roberta Paradiso and Stefania De Pascale. All rights reserved. Growth and Flowering Responses of Cut Chrysanthemum Grown under Restricted Root Volume to Irrigation Frequency Sun, 16 Nov 2014 08:14:02 +0000 Influences of irrigation frequency on the growth and flowering of chrysanthemum grown under restricted root volume were tested. Chrysanthemum cuttings (Chrysanthemum morifolium “Reagan White”) were grown in seedling tray which contained coconut peat in volumes of 73 and 140 cm3. Plants were irrigated with drip irrigation at irrigation frequencies of 4 (266 mL), 6 (400 mL), and 8 (533 mL) times/day to observe their growth and flowering performances. There was interaction between irrigation frequency and substrate volume on plant height of chrysanthemum. Plants grown in 140 cm3 substrates and irrigated 6 times/day produced the tallest plant of 109.25 cm. Plants irrigated 6 and 8 times/day had significantly higher level of phosphorus content in their leaves than those plants irrigated 4 times/day. The total leaf area, number of internodes, leaf length, and leaf width of chrysanthemums grown in 140 cm3 substrate were significantly higher than those grown in 73 cm3 substrate. The numbers of flowers were affected by both irrigation frequencies and substrate volumes. Chrysanthemums irrigated 8 times/day had an average of 19.56 flowers while those irrigated 4 times/day had an average of 16.63 flowers. Increasing irrigation frequency can improve the growth and flowering of chrysanthemums in small substrate volumes. Viyachai Taweesak, Thohirah Lee Abdullah, Siti Aishah Hassan, Nitty Hirawaty Kamarulzaman, and Wan Abdullah Wan Yusoff Copyright © 2014 Viyachai Taweesak et al. All rights reserved. Heritability and Genetic Advance among Chili Pepper Genotypes for Heat Tolerance and Morphophysiological Characteristics Sun, 16 Nov 2014 00:00:00 +0000 High temperature tolerance is an important component of adaptation to arid and semiarid cropping environment in chili pepper. Two experiments were carried out to study the genetic variability among chili pepper for heat tolerance and morphophysiological traits and to estimate heritability and genetic advance expected from selection. There was a highly significant variation among the genotypes in response to high temperature (CMT), photosynthesis rate, plant height, disease incidence, fruit length, fruit weight, number of fruits, and yield per plant. At 5% selection intensity, high genetic advance as percent of the mean (>20%) was observed for CMT, photosynthesis rate, fruit length, fruit weight, number of fruits, and yield per plant. Similarly, high heritability (>60%) was also observed indicating the substantial effect of additive gene more than the environmental effect. Yield per plant showed strong to moderately positive correlations () at phenotypic level while at genotypic level correlation coefficient ranged from 0.16 to 0.72 for CMT, plant height, fruit length, and number of fruits. Cluster analysis revealed eight groups and Group VIII recorded the highest CMT and yield. Group IV recorded 13 genotypes while Groups II, VII, and VIII recorded one each. The results showed that the availability of genetic variance could be useful for exploitation through selection for further breeding purposes. Magaji G. Usman, M. Y. Rafii, M. R. Ismail, M. A. Malek, and Mohammad Abdul Latif Copyright © 2014 Magaji G. Usman et al. All rights reserved. Role of Ulva lactuca Extract in Alleviation of Salinity Stress on Wheat Seedlings Mon, 10 Nov 2014 00:00:00 +0000 Seaweeds are potentially excellent sources of highly bioactive materials that could represent useful leads in the alleviation of salinity stress. The effects of presoaking wheat grains in water extract of Ulva lactuca on growth, some enzymatic activities, and protein pattern of salinized plants were investigated in this study. Algal presoaking of grains demonstrated a highly significant enhancement in the percentage of seed germination and growth parameters. The activity of superoxide dismutase (SOD) and catalase (CAT) increased with increasing the algal extract concentration while activity of ascorbate peroxidase (APX) and glutathione reductase (GR) was decreased with increasing concentration of algal extract more than 1% (w/v). The protein pattern of wheat seedling showed 12 newly formed bands as result of algal extract treatments compared with control. The bioactive components in U. lactuca extract such as ascorbic acid, betaine, glutathione, and proline could potentially participate in the alleviation of salinity stress. Therefore, algal presoaking is proved to be an effective technique to improve the growth of wheat seedlings under salt stress conditions. Wael M. Ibrahim, Refaat M. Ali, Khaulood A. Hemida, and Makram A. Sayed Copyright © 2014 Wael M. Ibrahim et al. All rights reserved. Identification and Evaluation of Strain B37 of Bacillus subtilis Antagonistic to Sapstain Fungi on Poplar Wood Tue, 21 Oct 2014 06:52:06 +0000 Devaluation of poplar products by sapstain accounts for huge and unpredictable losses each year in China. We had isolated four poplar sapstain fungi, Ceratocystis adiposa Hz91, Lasiodiplodia theobromae YM0737, L. theobromae Fx46, and Fusarium sp. YM05, from five poplar varieties and 13 antagonistic bacteria from nine diverse varieties. After being experimented with agar plates, wood chips, and enzyme activities, strain B37 was identified as the best poplar sapstain biocontrol bacterium. The strain B37 was identified as Bacillus subtilis using sequences of the 16S rRNA gene, physiological biochemical, and morphological characteristics. XiaoHua Zhang, GuiHua Zhao, DeWei Li, ShunPeng Li, and Qing Hong Copyright © 2014 XiaoHua Zhang et al. All rights reserved. The Response of Durum Wheat to the Preceding Crop in a Mediterranean Environment Tue, 21 Oct 2014 00:00:00 +0000 Crop sequence is an important management practice that may affect durum wheat (Triticum durum Desf.) production. Field research was conducted in 2007-2008 and 2008-2009 seasons in a rain-fed cold Mediterranean environment to examine the impact of the preceding crops alfalfa (Medicago sativa L.), maize (Zea mays L.), sunflower (Helianthus annuus L.), and bread wheat (Triticum aestivum L.) on yield and N uptake of four durum wheat varieties. The response of grain yield of durum wheat to the preceding crop was high in 2007-2008 and was absent in the 2008-2009 season, because of the heavy rainfall that negatively impacted establishment, vegetative growth, and grain yield of durum wheat due to waterlogging. In the first season, durum wheat grain yield was highest following alfalfa, and was 33% lower following wheat. The yield increase of durum wheat following alfalfa was mainly due to an increased number of spikes per unit area and number of kernels per spike, while the yield decrease following wheat was mainly due to a reduction of spike number per unit area. Variety growth habit and performance did not affect the response to preceding crop and varieties ranked in the order Levante > Saragolla = Svevo > Normanno. Laura Ercoli, Alessandro Masoni, Silvia Pampana, Marco Mariotti, and Iduna Arduini Copyright © 2014 Laura Ercoli et al. All rights reserved. Mesoscale Model to Select the Ideal Location for New Vineyard Plantations in the Rioja Qualified Denomination of Origin Thu, 16 Oct 2014 07:20:54 +0000 La Rioja is the region where the top rated wines from Spain come from and also the origin of one of the most prestigious wines in the world. It is worldwide recognized, not only for the quality of the vine, but also for the many factors involved in the process that are controllable by the farmer, such as fertilizers, irrigation, etc. Likewise, there are other key factors, which cannot be controlled that play, however, a crucial role in the quality of the wine, such as temperature, radiation, humidity, and rainfall. This research is focused on two of these factors: temperature and irradiation. The objective of this paper is to be able to recognize these factors, so as to ensure a proper decision criterion when selecting the best location for new vineyard plantations. To achieve this objective, a mesoscale model MM5 is used, and its performance is assessed and compared using different parameters, from the grid resolution to the physical parameterization of the model. Finally, the study evaluates the impact of the different parameterizations and options for the simulation of meteorological variables particularly relevant when choosing new vineyard sites (rainfall frequency, temperature, and sun exposure). E. Martínez-Cámara, J. Blanco, E. Jiménez, J. C. Saenz-Díez, and J. Rioja Copyright © 2014 E. Martínez-Cámara et al. All rights reserved. An Investigation on Forage Yield Capacity of Kermes Oak (Quercus coccifera L.) and Grazing Planning of Mediterranean Maquis Scrublands for Traditional Goat Farming Tue, 14 Oct 2014 07:44:34 +0000 This study investigated grazing capacities of maquis scrubland and preparation principles of grazing management in forest resources. Kermes oak (Quercus coccifera L.), which is widespread as a main shrub species in maquis vegetation in Turkey, and pure hair goats (Capra hircus L.) feeding on shoots and leaves of this shrub were selected for study. The study was conducted in two stages. Green leaf and shoot samples were taken from kermes oaks in the first stage and the amount of green herbage yield (gm−1) and dry matter yield (kgha−1) that may be obtained per unit area from these samples was identified. The considered amount of dry matter consumed by pure hair goats daily and the number of goats being fed within 1 year on land of 1 ha according to different land coverage rates of kermes oaks (goat headhayr) were calculated. In the second stage, grazing capacities of sample areas where kermes oak spread were identified and compared with the grazing plan prepared by the forestry administration for this area. Forage yield variance according to land coverage rates of maquis scrublands should be considered when determining optimum animal numbers for grazing per area for sustainable goat farming. Ahmet Tolunay, Elif Adıyaman, Ayhan Akyol, Duygu İnce, Türkay Türkoğlu, and Veysel Ayhan Copyright © 2014 Ahmet Tolunay et al. All rights reserved. Nutritional and Hygienic Quality of Raw Milk in the Mid-Northern Region of Algeria: Correlations and Risk Factors Tue, 14 Oct 2014 00:00:00 +0000 This paper aims to study the overall quality of raw milk in the mid-northern region of Algeria. The analysis results showed a decrease in the average temperature for the delivery of 1,54°C with . However, no significant variation () was observed in almost all the physical and nutritional parameters studied (pH, fat content, and protein content) between M1 and M2. The average contamination by total mesophilic aerobic bacteria (TMAB), coliforms, yeasts, molds, and different pathogens in samples taken at M1 showed significant changes at M2. This was confirmed by the decrease of reduction time of methylene blue (RTMB), about 54%. The variation was described as follows: () for yeasts and () for molds in M1 and M2, () for TMAB in M1, and () for TC, FC, and TMAB in M2. The analysis for the detection of Salmonella spp. showed no contamination in all samples tested, while antibiotic residues were detected in 35% of milks delivered. In conclusion, several risk factors have been identified in this study, namely, the effect of the season and the distance between the farm and the dairy unit. Soumeya Adjlane-Kaouche, Rafik Benhacine, Faiçal Ghozlane, and Abderrahmane Mati Copyright © 2014 Soumeya Adjlane-Kaouche et al. All rights reserved. Water Deficit and Seasonality Study on Essential Oil Constituents of Lippia gracilis Schauer Germplasm Thu, 11 Sep 2014 06:06:48 +0000 The aim of this study was to analyze the chemical composition of the essential oil from leaves of Lippia gracilis genotypes, in the dry and rainy seasons, and with and without irrigation. The extraction of essential oil was realized by hydrodistillation in a Clevenger apparatus. The chemical composition analysis was performed using a GC-MS/FID. The leaves of the L. gracilis genotypes provide essential oil with content between 1.25% and 1.92% in the rainy season and 1.42% and 2.70% in the dry season; when irrigation was used the content was between 1.42% and 2.87%, without irrigation contents were between 1.60% and 3.00%. The chemical composition of L. gracilis showed high levels of terpenes. The major constituent of genotypes LGRA-106 was thymol and carvacrol was the major constituent for the other genotypes. Concentrations showed little variation between seasons, demonstrating the stability of the chemical composition of L. gracilis even with different climatic conditions. Elizangela Mércia de Oliveira Cruz, Jéssika Andreza Oliveira Pinto, Saymo Santos Fontes, Maria de Fátima Arrigoni-Blank, Leandro Bacci, Hugo César Ramos de Jesus, Darlisson de Alexandria Santos, Péricles Barreto Alves, and Arie Fitzgerald Blank Copyright © 2014 Elizangela Mércia de Oliveira Cruz et al. All rights reserved. The Galloyl Catechins Contributing to Main Antioxidant Capacity of Tea Made from Camellia sinensis in China Thu, 28 Aug 2014 00:00:00 +0000 Total polyphenol content, catechins content, and antioxidant capacities of green, dark, oolong, and black teas made from Camellia sinensis in China were evaluated. The total polyphenol content of 20 samples of tea was in the range of 7.82–32.36%. Total catechins content was in the range of 4.34–24.27%. The antioxidant capacity of tea extract was determined by the oxygen radical absorbance capacity (ORAC) test and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging test. Total polyphenol content, catechins content, and antioxidant capacity decreased in the following order: green > oolong > black > dark tea. A positive correlation existed between the antioxidant capacity and total polyphenol content or catechins content (). The antioxidant capacities of five major catechins (epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epicatechin, epigallocatechin, and catechin) were determined by online HPLC DPPH radical-scavenging; the antioxidant activity of tea was mainly attributed to the esterified catechins (EGCG or ECG). Chunjian Zhao, Chunying Li, Shuaihua Liu, and Lei Yang Copyright © 2014 Chunjian Zhao et al. All rights reserved. An Enhanced Drought-Tolerant Method Using SA-Loaded PAMPS Polymer Materials Applied on Tobacco Pelleted Seeds Wed, 27 Aug 2014 00:00:00 +0000 Drought is one of the most important stress factors limiting the seed industry and crop production. Present study was undertaken to create novel drought-resistant pelleted seeds using the combined materials with superabsorbent polymer, poly(2-acrylamide-2-methyl propane sulfonic acid) (PAMPS) hydrogel, and drought resistance agent, salicylic acid (SA). The optimized PAMPS hydrogel was obtained as the molar ratio of 2-acrylamido-2-methyl-propanesulfonic acid (AMPS) to potassium peroxydisulfate (KPS) and N, N′-methylene-bis-acrylamide (MBA) was 1 : 0.00046 : 0.00134. The hydrogel weight after swelling in deionized water for 24 h reached 4306 times its own dry weight. The water retention ratio (RR) of PAMPS was significantly higher as compared with the control. It could keep as high as 85.3% of original weight after 30 min at 110°C; even at 25°C for 40 d, the PAMPS still kept RR at 33.67%. PAMPS disintegration ratio increased gradually and reached around 30% after embedding in soil or activated sludge for 60 d. In addition, there were better seed germination performance and seedling growth in the pelleted treatments with SA-loaded PAMPS hydrogel under drought stress than control. It suggested that SA-loaded PAMPS hydrogel, a nontoxic superabsorbent polymer, could be used as an effective drought resistance material applied to tobacco pelleted seeds. Yajing Guan, Huawei Cui, Wenguang Ma, Yunye Zheng, Yixin Tian, and Jin Hu Copyright © 2014 Yajing Guan et al. All rights reserved. Antimicrobial Compounds from Leaf Extracts of Jatropha curcas, Psidium guajava, and Andrographis paniculata Tue, 26 Aug 2014 10:11:19 +0000 The present research was conducted to discover antimicrobial compounds in methanolic leaf extracts of Jatropha curcas and Andrographis paniculata and ethanolic leaf extract of Psidium guajava and the effectiveness against microbes on flower preservative solution of cut Mokara Red orchid flowers was evaluated. The leaves were analyzed using gas chromatography-mass spectrometry. A total of nine, 66, and 29 compounds were identified in J. curcas, P. guajava, and A. paniculata leaf extracts, with five (88.18%), four (34.66%), and three (50.47%) having unique antimicrobial compounds, respectively. The experimental design on vase life was conducted using a completely randomized design with 10 replications. The flower vase life was about 6 days in the solution containing the P. guajava and A. paniculata leaf extracts at 15mg/L. Moreover, solution with leaf extracts of A. paniculata had the lowest bacterial count compared to P. guajava and J. curcas. Thus, these leaf extracts revealed the presence of relevant antimicrobial compounds. The leaf extracts have the potential as a cut flower solution to minimize microbial populations and extend flower vase life. However, the activities of specific antimicrobial compounds and double or triple combination leaf extracts to enhance the effectiveness to extend the vase life need to be tested. M. M. Rahman, S. H. Ahmad, M. T. M. Mohamed, and M. Z. Ab Rahman Copyright © 2014 M. M. Rahman et al. All rights reserved. Effect of Tillage Practices on Soil Properties and Crop Productivity in Wheat-Mungbean-Rice Cropping System under Subtropical Climatic Conditions Thu, 14 Aug 2014 00:00:00 +0000 This study was conducted to know cropping cycles required to improve OM status in soil and to investigate the effects of medium-term tillage practices on soil properties and crop yields in Grey Terrace soil of Bangladesh under wheat-mungbean-T. aman cropping system. Four different tillage practices, namely, zero tillage (ZT), minimum tillage (MT), conventional tillage (CT), and deep tillage (DT), were studied in a randomized complete block (RCB) design with four replications. Tillage practices showed positive effects on soil properties and crop yields. After four cropping cycles, the highest OM accumulation, the maximum root mass density (0–15 cm soil depth), and the improved physical and chemical properties were recorded in the conservational tillage practices. Bulk and particle densities were decreased due to tillage practices, having the highest reduction of these properties and the highest increase of porosity and field capacity in zero tillage. The highest total N, P, K, and S in their available forms were recorded in zero tillage. All tillage practices showed similar yield after four years of cropping cycles. Therefore, we conclude that zero tillage with 20% residue retention was found to be suitable for soil health and achieving optimum yield under the cropping system in Grey Terrace soil (Aeric Albaquept). Md. Khairul Alam, Md. Monirul Islam, Nazmus Salahin, and Mirza Hasanuzzaman Copyright © 2014 Md. Khairul Alam et al. All rights reserved. Response of Soil CO2 Emission and Summer Maize Yield to Plant Density and Straw Mulching in the North China Plain Wed, 23 Jul 2014 10:49:03 +0000 Demand for food security and the current global warming situation make high and strict demands on the North China Plain for both food production and the inhibition of agricultural carbon emissions. To explore the most effective way to decrease soil CO2 emissions and maintain high grain yield, studies were conducted during the 2012 and 2013 summer maize growing seasons to assess the effects of wheat straw mulching on the soil CO2 emissions and grain yield of summer maize by adding 0 and 0.6 kg m−2 to fields with plant densities of 100 000, 75 000, and 55 000 plants ha−1. The study indicated that straw mulching had some positive effects on summer maize grain yield by improving the 1000-kernel weight. Meanwhile, straw mulching effectively controlled the soil respiration rate and cumulative CO2 emission flux, particularly in fields planted at a density of 75 000 plants ha−1, which achieved maximum grain yield and minimum carbon emission per unit yield. In addition, soil microbial biomass and microbial activity were significantly higher in mulching treatments than in nonmulching treatments. Consequently, summer maize with straw mulching at 75 000 plants ha−1 is an environmentally friendly option in the North China Plain. Quanru Liu, Xinhui Liu, Chengyue Bian, Changjian Ma, Kun Lang, Huifang Han, and Quanqi Li Copyright © 2014 Quanru Liu et al. All rights reserved. Management of Mango Hopper, Idioscopus clypealis, Using Chemical Insecticides and Neem Oil Tue, 22 Jul 2014 00:00:00 +0000 An experiment was conducted in Field Laboratory, Department of Entomology at Bangladesh Agricultural University, Mymensingh, during 2013 to manage the mango hopper, Idioscopus clypealis L, using three chemical insecticides, Imidacloprid (0.3%), Endosulfan (0.5%), and Cypermethrin (0.4%), and natural Neem oil (3%) with three replications of each. All the treatments were significantly effective in managing mango hopper in comparison to the control. Imidacloprid showed the highest efficacy in percentage of reduction of hopper population (92.50 ± 9.02) at 72 hours after treatment in case of 2nd spray. It also showed the highest overall percentage of reduction (88.59 ± 8.64) of hopper population and less toxicity to natural enemies including green ant, spider, and lacewing of mango hopper. In case of biopesticide, azadirachtin based Neem oil was found effective against mango hopper as 48.35, 60.15, and 56.54% reduction after 24, 72, and 168 hours of spraying, respectively, which was comparable with Cypermethrin as there was no statistically significant difference after 168 hours of spray. Natural enemies were also higher after 1st and 2nd spray in case of Neem oil. S. M. Adnan, M. M. Uddin, M. J. Alam, M. S. Islam, M. A. Kashem, M. Y. Rafii, and M. A. Latif Copyright © 2014 S. M. Adnan et al. All rights reserved. The Genetic Structure of Wild Orobanche cumana Wallr. (Orobanchaceae) Populations in Eastern Bulgaria Reflects Introgressions from Weedy Populations Sun, 20 Jul 2014 09:07:10 +0000 Orobanche cumana is a holoparasitic plant naturally distributed from central Asia to south-eastern Europe, where it parasitizes wild Asteraceae species. It is also an important parasitic weed of sunflower crops. The objective of this research was to investigate genetic diversity, population structure, and virulence on sunflower of O. cumana populations parasitizing wild plants in eastern Bulgaria. Fresh tissue of eight O. cumana populations and mature seeds of four of them were collected in situ on wild hosts. Genetic diversity and population structure were studied with SSR markers and compared to weedy populations. Two main gene pools were identified in Bulgarian populations, with most of the populations having intermediate characteristics. Cross-inoculation experiments revealed that O. cumana populations collected on wild species possessed similar ability to parasitize sunflower to those collected on sunflower. The results were explained on the basis of an effective genetic exchange between populations parasitizing sunflower crops and those parasitizing wild species. The occurrence of bidirectional gene flow may have an impact on wild populations, as new physiological races continuously emerge in weedy populations. Also, genetic variability of wild populations may favour the ability of weedy populations to overcome sunflower resistance mechanisms. Rocío Pineda-Martos, Antonio J. Pujadas-Salvà, José M. Fernández-Martínez, Kiril Stoyanov, Leonardo Velasco, and Begoña Pérez-Vich Copyright © 2014 Rocío Pineda-Martos et al. All rights reserved. The Role of Antioxidant Enzymes in Adaptive Responses to Sheath Blight Infestation under Different Fertilization Rates and Hill Densities Thu, 17 Jul 2014 09:56:32 +0000 Sheath blight of rice, caused by Rhizoctonia solani, is one of the most devastating rice diseases worldwide. No rice cultivar has been found to be completely resistant to this fungus. Identifying antioxidant enzymes activities (activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) and malondialdehyde content (MDA) responding to sheath blight infestation is imperative to understand the defensive mechanism systems of rice. In the present study, two inoculation methods (toothpick and agar block method) were tested in double-season rice. Toothpick method had greater lesion length than agar block method in late season. A higher MDA content was found under toothpick method compared with agar block method, which led to greater POD and SOD activities. Dense planting caused higher lesion length resulting in a higher MDA content, which also subsequently stimulated higher POD and SOD activity. Sheath blight severity was significantly related to the activity of antioxidant enzyme during both seasons. The present study implies that rice plants possess a system of antioxidant protective enzymes which helps them in adaptation to sheath blight infection stresses. Several agronomic practices, such as rational use of fertilizers and optimum planting density, involved in regulating antioxidant protective enzyme systems can be regarded as promising strategy to suppress the sheath blight development. Wei Wu, Xuejie Wan, Farooq Shah, Shah Fahad, and Jianliang Huang Copyright © 2014 Wei Wu et al. All rights reserved. Greenhouse Gas Emissions from Cotton Field under Different Irrigation Methods and Fertilization Regimes in Arid Northwestern China Wed, 16 Jul 2014 08:52:43 +0000 Drip irrigation is broadly extended in order to save water in the arid cotton production region of China. Biochar is thought to be a useful soil amendment to reduce greenhouse gas (GHG) emissions. Here, a field study was conducted to compare the emissions of nitrous oxide (N2O) and methane (CH4) under different irrigation methods (drip irrigation (D) and furrow irrigation (F)) and fertilization regimes (conventional fertilization (C) and conventional fertilization + biochar (B)) during the cotton growth season. The accumulated N2O emissions were significantly lower with FB, DC, and DB than with FC by 28.8%, 36.1%, and 37.6%, while accumulated CH4 uptake was 264.5%, 226.7%, and 154.2% higher with DC, DB, and FC than that with FB, respectively. Irrigation methods showed a significant effect on total global warming potential (GWP) and yield-scaled GWP (). DC and DB showed higher cotton yield, water use efficiency (WUE), and lower yield-scaled GWP, as compared with FC and FB. This suggests that in northwestern China mulched-drip irrigation should be a better approach to increase cotton yield with depressed GHG. In addition, biochar addition increased CH4 emissions while it decreased emissions. Jie Wu, Wei Guo, Jinfei Feng, Lanhai Li, Haishui Yang, Xiaohua Wang, and Xinmin Bian Copyright © 2014 Jie Wu et al. All rights reserved. Rhizomes Help the Forage Grass Leymus chinensis to Adapt to the Salt and Alkali Stresses Sun, 13 Jul 2014 00:00:00 +0000 Leymus chinensis has extensive ecological adaptability and can grow well in saline-alkaline soils. The knowledge about tolerance mechanisms of L. chinensis could be base for utilization of saline-alkaline soils and grassland restoration and rebuilding. Two neutral salts (NaCl : Na2SO4 = 9 : 1) and two alkaline salts (NaHCO3 : Na2CO3 = 9 : 1) with concentration of 0, 100, and 200 mmol/L were used to treat potted 35-day-old seedlings with rhizome growth, respectively. After 10 days, the biomass and number of daughter shoots all decreased, with more reduction in alkali than in salt stress. The rhizome biomass reduced more than other organs. The number of daughter shoots from rhizome was more than from tillers. Under both stresses, Na+ contents increased more in rhizome than in other organs; the reduction of K+ content was more in underground than aerial tissue. Anion ions or organic acids were absorbed to neutralize cations. Na+ content in stem and leaf increased markedly in high alkalinity (200 mmol/L), with accumulation of soluble sugar and organic acids sharply. Rhizomes help L. chinensis to adapt to saline and low alkaline stresses by transferring Na+. However, rhizomes lost the ability to prevent Na+ transport to aerial organs under high alkalinity, which led to severe growth inhibition of L. chinensis. Xiaoyu Li, Junfeng Wang, Jixiang Lin, Ying Wang, and Chunsheng Mu Copyright © 2014 Xiaoyu Li et al. All rights reserved. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content Sun, 06 Jul 2014 07:11:32 +0000 The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing treatment of tomato seeds in a field experiment for two years. Papimi device (amplitude on the order of 12.5 mT) has been used. The use of pulsed electromagnetic field as a presowing treatment was found to enhance plant growth in tomato plants at certain duration of exposure. Magnetic field treatments and especially the exposure of 10 and 15 minutes gave the best results in all measurements, except plant height and lycopene content. Yield per plant was higher in magnetic field treatments, compared to control. MF-15 treatment yield was 80.93% higher than control treatment. Lycopene content was higher in magnetic field treatments, although values showed no statistically significant differences. Aspasia Efthimiadou, Nikolaos Katsenios, Anestis Karkanis, Panayiota Papastylianou, Vassilios Triantafyllidis, Ilias Travlos, and Dimitrios J. Bilalis Copyright © 2014 Aspasia Efthimiadou et al. All rights reserved. Morphological and Photosynthetic Response to High and Low Irradiance of Aeschynanthus longicaulis Mon, 30 Jun 2014 11:49:41 +0000 Aeschynanthus longicaulis plants are understory plants in the forest, adapting to low light conditions in their native habitats. To observe the effects of the high irradiance on growth and physiology, plants were grown under two different light levels, PPFD 650 μmol·m–2·s–1 and 150 μmol·m–2·s–1 for 6 months. Plants under high irradiance had significantly thicker leaves with smaller leaf area, length, width, and perimeter compared to the plants grown under low irradiance. Under high irradiance, the leaf color turned yellowish and the total chlorophyll decreased from 5.081 mg·dm−2 to 3.367 mg·dm−2. The anthocyanin content of high irradiance leaves was double that of those under low irradiance. The plants under high irradiance had significantly lower Amax (5.69 μmol·m–2·s–1) and LSP (367 μmol·m–2·s–1) and higher LCP (21.9 μmol·m–2·s–1). The chlorophyll fluorescence parameter was significantly lower and NPQ was significantly higher in high irradiance plants. RLCs showed significantly lower and in plants under high irradiance. It can be concluded that the maximum PPFD of 650 μmol·m–2·s–1 led to significant light stress and photoinhibition of A. longicaulis. Qiansheng Li, Min Deng, Yanshi Xiong, Allen Coombes, and Wei Zhao Copyright © 2014 Qiansheng Li et al. All rights reserved. Response of Rice Genotypes to Weed Competition in Dry Direct-Seeded Rice in India Mon, 30 Jun 2014 07:27:52 +0000 The differential weed-competitive abilities of eight rice genotypes and the traits that may confer such attributes were investigated under partial weedy and weed-free conditions in naturally occurring weed flora in dry direct-seeded rice during the rainy seasons of 2011 and 2012 at Ludhiana, Punjab, India. The results showed genotypic differences in competitiveness against weeds. In weed-free plots, grain yield varied from 6.6 to 8.9 t ha−1 across different genotypes; it was lowest for PR-115 and highest for the hybrid H-97158. In partial weedy plots, grain yield and weed biomass at flowering varied from 3.6 to 6.7 t ha−1 and from 174 to 419 g m−2, respectively. In partial weedy plots, grain yield was lowest for PR-115 and highest for PR-120. Average yield loss due to weed competition ranged from 21 to 46% in different rice genotypes. The study showed that early canopy closure, high leaf area index at early stage, and high root biomass and volume correlated positively with competitiveness. This study suggests that some traits (root biomass, leaf area index, and shoot biomass at the early stage) could play an important role in conferring weed competitiveness and these traits can be explored for dry-seeded rice. Gulshan Mahajan, Mugalodi S. Ramesha, and Bhagirath S. Chauhan Copyright © 2014 Gulshan Mahajan et al. All rights reserved. Effects of GA3 Pregerminative Treatment on Gentiana lutea L. var. aurantiaca Germination and Seedlings Morphology Sun, 29 Jun 2014 09:53:41 +0000 Gentiana lutea L. is widely used in bitter beverages and in medicine; Gentianae Radix is the pharmaceutical name of the root of G. lutea. These uses have generated a high demand. The wild populations of Gentiana lutea var. aurantiaca (M. Laínz) M. Laínz have been decimated; it is necessary to establish guidelines for its cultivation. Gentian as most alpine species has dormant seeds. Dormancy can be removed by cold and by means of a gibberellic acid (GA3) treatment. However, cold treatments produce low germination percentages and GA3 treatments may produce off-type seedlings. So, the objective was to determine, for the first time, the presowing treatments that allow high germination rate and good seedling morphology. The best pregerminative doses of GA3 to break seed dormancy were 100, 500, and 1000 ppm, while the best doses to optimize the seedling habit were 50 and 100 ppm. This study provides, for the first time, a 100 ppm GA3 dose that led to a high germination rate and good seedling morphology, as the starting point for gentian regular cultivation. Óscar González-López and Pedro A. Casquero Copyright © 2014 Óscar González-López and Pedro A. Casquero. All rights reserved. Switchgrass Cultivar/Ecotype Selection and Management for Biofuels in the Upper Southeast USA Sun, 29 Jun 2014 07:57:33 +0000 Switchgrass (Panicum virgatum L.), a perennial warm-season grass indigenous to the eastern USA, has potential as a biofuels feedstock. The objective of this study was to investigate the performance of upland and lowland switchgrass cultivars under different environments and management treatments. Four cultivars of switchgrass were evaluated from 2000 to 2001 under two management regimes in plots established in 1992 at eight locations in the upper southeastern USA. Two management treatments included 1) a single annual harvest (in late October to early November) and a single application of 50 kg N/ha/yr and 2) two annual harvests (in midsummer and November) and a split application of 100 kg N/ha/yr. Biomass yields averaged 15 Mg/ha/yr and ranged from 10 to 22 Mg/ha/yr across cultivars, managements, locations, and years. There was no yield advantage in taking two harvests of the lowland cultivars (Alamo and Kanlow). When harvested twice, upland cultivars (Cave-in-Rock and Shelter) provided yields equivalent to the lowland ecotypes. Tiller density was 36% lower in stands cutting only once per year, but the stands appeared vigorous after nine years of such management. Lowland cultivars and a one-cutting management (after the tops have senesced) using low rates of applied N (50 kg/ha) are recommended. Rocky Lemus, David J. Parrish, and Dale D. Wolf Copyright © 2014 Rocky Lemus et al. All rights reserved. Growth and Comprehensive Quality Index of Tomato under Rain Shelters in Response to Different Irrigation and Drainage Treatments Wed, 25 Jun 2014 10:38:40 +0000 The effects of two levels of irrigation water (100%, 60%) and buried underground pipe depths (0.8 m, 0.6 m) under rain shelters’ conditions on yield and some quality parameters of tomato were investigated. A fully randomized factorial experiment was conducted between April and August in 2011 and 2012 at Hohai University. It was found that drainage treatments enhanced biomass production, whereas soil desiccation led to biomass reduction. At 60 cm buried underground pipe depths, the drought treatments increased the mean root weight and root-shoot ratio by 14% and 39%, respectively. The main effects of drainage treatments on the fruit quality were increases in total soluble solids (TSS), soluble sugar (SS), and vitamin C (VC) compared to the control. In addition, drainage treatments increased the average yield by 13% and 9%, respectively, in both years. The drought treatments did not significantly alter fruit yield, although mean single fruit weight was slightly reduced. Instead, these treatments tend to have great potential to improve fruit quality (TSS, SS, and VC) to variable extents. In both years, the drought treatment at 60 cm buried underground pipe depths proved to possess the highest comprehensive quality index based on Principal Component Analysis. Guang-cheng Shao, Ming-hui Wang, Na Liu, Min Yuan, Prem Kumar, and Dong-Li She Copyright © 2014 Guang-cheng Shao et al. All rights reserved. Photosynthetic and Canopy Characteristics of Different Varieties at the Early Elongation Stage and Their Relationships with the Cane Yield in Sugarcane Sun, 22 Jun 2014 13:20:05 +0000 During sugarcane growth, the Early Elongation stage is critical to cane yield formation. In this study, parameters of 17 sugarcane varieties were determined at the Early Elongation stage using CI-301 photosynthesis measuring system and CI-100 digital plant canopy imager. The data analysis showed highly significant differences in leaf area index (LAI), mean foliage inclination angle (MFIA), transmission coefficient for diffused light penetration (TD), transmission coefficient for solar beam radiation penetration (TR), leaf distribution (LD), net photosynthetic rate (PN), transpiration rate (), and stomatal conductance (GS) among sugarcane varieties. Based on the photosynthetic or canopy parameters, the 17 sugarcane varieties were classified into four categories. Through the factor analysis, nine parameters were represented by three principal factors, of which the cumulative rate of variance contributions reached 85.77%. A regression for sugarcane yield, with relative error of yield fitting less than 0.05, was successfully established: sugarcane yield = −27.19 − 1.69 × PN + 0.17 ×   + 90.43 × LAI − 408.81 × LD + 0.0015 × NSH + 101.38 ×   (). This study helps provide a theoretical basis and technical guidance for the screening of new sugarcane varieties with high net photosynthetic rate and ideal canopy structure. Jun Luo, Yong-Bao Pan, Liping Xu, Yuye Zhang, Hua Zhang, Rukai Chen, and Youxiong Que Copyright © 2014 Jun Luo et al. All rights reserved. Normalized Difference Vegetation Index as a Tool for Wheat Yield Estimation: A Case Study from Faisalabad, Pakistan Sun, 22 Jun 2014 13:09:11 +0000 For estimation of grain yield in wheat, Normalized Difference Vegetation Index (NDVI) is considered as a potential screening tool. Field experiments were conducted to scrutinize the response of NDVI to yield behavior of different wheat cultivars and nitrogen fertilization at agronomic research area, University of Agriculture Faisalabad (UAF) during the two years 2008-09 and 2009-10. For recording the value of NDVI, Green seeker (Handheld-505) was used. Split plot design was used as experimental model in, keeping four nitrogen rates ( kg ha−1,  kg ha−1,  kg ha−1, and  kg ha−1) in main plots and ten wheat cultivars (Bakkhar-2001, Chakwal-50, Chakwal-97, Faisalabad-2008, GA-2002, Inqlab-91, Lasani-2008, Miraj-2008, Sahar-2006, and Shafaq-2006) in subplots with four replications. Impact of nitrogen and difference between cultivars were forecasted through NDVI. The results suggested that nitrogen treatment N4 (220 kg ha−1) and cultivar Faisalabad-2008 gave maximum NDVI value (0.85) at grain filling stage among all treatments. The correlation among NDVI at booting, grain filling, and maturity stages with grain yield was positive (; ; ), respectively. So, booting, grain filling, and maturity can be good depictive stages during mid and later growth stages of wheat crop under agroclimatic conditions of Faisalabad and under similar other wheat growing environments in the country. Syeda Refat Sultana, Amjed Ali, Ashfaq Ahmad, Muhammad Mubeen, M. Zia-Ul-Haq, Shakeel Ahmad, Sezai Ercisli, and Hawa Z. E. Jaafar Copyright © 2014 Syeda Refat Sultana et al. All rights reserved. The Technical Efficiency of Specialised Milk Farms: A Regional View Sun, 22 Jun 2014 11:30:24 +0000 The aim of the article is to evaluate production efficiency and its determinants of specialised dairy farming among the EU regions. In the most of European regions, there is a relatively high significance of small specialised farms including dairy farms. The DEAVRS method (data envelopment analysis with variable returns to scale) reveals efficient and inefficient regions including the scale efficiency. In the next step, the two-sample -test determines differences of economic and structural indicators between efficient and inefficient regions. The research reveals that substitution of labour by capital/contract work explains the variability of the farm net value added per AWU (annual work unit) income indicator by more than 30%. The significant economic determinants of production efficiency in specialised dairy farming are farm size, herd size, crop output per hectare, productivity of energy, and capital (at ). Specialised dairy farms in efficient regions have significantly higher farm net value added per AWU than inefficient regions. Agricultural enterprises in inefficient regions have a more extensive structure and produce more noncommodity output (public goods). Specialised dairy farms in efficient regions have a slightly higher milk yield, specific livestock costs of feed, bedding, and veterinary services per livestock unit. Jindřich Špička and Luboš Smutka Copyright © 2014 Jindřich Špička and Luboš Smutka. All rights reserved. Water Management Practices Affect Arsenic and Cadmium Accumulation in Rice Grains Wed, 11 Jun 2014 11:29:27 +0000 Cadmium (Cd) and arsenic (As) accumulation in rice grains is a great threat to its productivity, grain quality, and thus human health. Pot and field studies were carried out to unravel the effect of different water management practices (aerobic, aerobic-flooded, and flooded) on Cd and As accumulation in rice grains of two different varieties. In pot experiment, Cd or As was also added into the soil as treatment. Pots without Cd or As addition were maintained as control. Results indicated that water management practices significantly influenced the Cd and As concentration in rice grains and aerobic cultivation of rice furnished less As concentration in its grains. Nonetheless, Cd concentration in this treatment was higher than the grains of flooded rice. Likewise, in field study, aerobic and flooded rice cultivation recorded higher Cd and As concentration, respectively. However, growing of rice in aerobic-flooded conditions decreased the Cd concentration by 9.38 times on average basis as compared to aerobic rice. Furthermore, this treatment showed 28% less As concentration than that recorded in flooded rice cultivation. The results suggested that aerobic-flooded cultivation may be a promising strategy to reduce the Cd and As accumulations in rice grains simultaneously. Liming Sun, Manman Zheng, Hongyan Liu, Shaobing Peng, Jianliang Huang, Kehui Cui, and Lixiao Nie Copyright © 2014 Liming Sun et al. All rights reserved. Effects of Irrigation with Treated Wastewater on Root and Fruit Mineral Elements of Chemlali Olive Cultivar Wed, 11 Jun 2014 05:55:42 +0000 Twenty-year-old “Chemlali” olive trees trained to vase and rainfed were investigated in either “on” (2004) or “off” (2003) year. A randomized block design with three blocks and three treatments was used and each experimental plot consisted of nine olive trees. Three treatments were applied: (1) rainfed conditions (RF, used as control treatment); (2) irrigation with well water (WW); and (3) irrigation with treated wastewater (TWW). Irrigation with TWW led to a significant increase of root N, P, Ca, Zn, Mn, Na, and Cl concentrations, in particular in the on-year. Data showed significant differences, between the two years, for the concentration of the mineral elements in the roots, with general lower values in the on-year, probably as a consequence of nutrients movement upward in the tree. Fruit N, P, K, Zn, Mn, and Cl contents were significantly higher in TWW irrigated trees with respect to both RF and WW trees, whereas similar values for Ca, Mg, Na, and Cl contents were measured for WW and TWW irrigated trees. The irrigation with TWW allowed to reuse problematic waters and to save nutrients inputs in the olive orchard thus moving towards a more sustainable management of olive orchards in countries where water is the major limiting factor for agriculture. Saida Bedbabis, Béchir Ben Rouina, Makki Boukhris, and Giuseppe Ferrara Copyright © 2014 Saida Bedbabis et al. All rights reserved. Estimates for Genetic Variance Components in Reciprocal Recurrent Selection in Populations Derived from Maize Single-Cross Hybrids Mon, 09 Jun 2014 06:00:15 +0000 This study was carried out to obtain the estimates of genetic variance and covariance components related to intra- and interpopulation in the original populations (C0) and in the third cycle (C3) of reciprocal recurrent selection (RRS) which allows breeders to define the best breeding strategy. For that purpose, the half-sib progenies of intrapopulation (P11 and P22) and interpopulation (P12 and P21) from populations 1 and 2 derived from single-cross hybrids in the 0 and 3 cycles of the reciprocal recurrent selection program were used. The intra- and interpopulation progenies were evaluated in a triple lattice design in two separate locations. The data for unhusked ear weight (ear weight without husk) and plant height were collected. All genetic variance and covariance components were estimated from the expected mean squares. The breakdown of additive variance into intrapopulation and interpopulation additive deviations () and the covariance between these and their intrapopulation additive effects () found predominance of the dominance effect for unhusked ear weight. Plant height for these components shows that the intrapopulation additive effect explains most of the variation. Estimates for intrapopulation and interpopulation additive genetic variances confirm that populations derived from single-cross hybrids have potential for recurrent selection programs. Matheus Costa dos Reis, José Maria Villela Pádua, Guilherme Barbosa Abreu, Fernando Lisboa Guedes, Rodrigo Vieira Balbi, and João Cândido de Souza Copyright © 2014 Matheus Costa dos Reis et al. All rights reserved. Validation of Novel Reference Genes for Reverse Transcription Quantitative Real-Time PCR in Drought-Stressed Sugarcane Mon, 02 Jun 2014 09:15:54 +0000 One of the most challenging aspects of RT-qPCR data analysis is the identification of reliable reference genes. Ideally, they should be neither induced nor repressed under different experimental conditions. To date, few reference genes have been adequately studied for sugarcane (Saccharum spp.) using statistical approaches. In this work, six candidate genes (αTUB, GAPDH, H1, SAMDC, UBQ, and 25S rRNA) were tested for gene expression normalization of sugarcane root tissues from drought-tolerant and -sensitive accessions after continuous dehydration (24 h). By undergoing different approaches (GeNorm, NormFinder, and BestKeeper), it was shown that most of them could be used in combinations for normalization purposes, with the exception of SAMDC. Nevertheless three of them (H1, αTUB, and GAPDH) were considered the most reliable reference genes. Their suitability as reference genes validated the expression profiles of two targets (AS and PFPα1), related to SuperSAGE unitags, in agreement with results revealed by previous in silico analysis. The other two sugarcane unitags (ACC oxidase and PIP1-1), after salt stress (100 mM NaCl), presented their expressions validated in the same way. In conclusion, these reference genes will be useful for dissecting gene expression in sugarcane roots under abiotic stress, especially in transcriptomic studies using SuperSAGE or RNAseq approaches. Roberta Lane de Oliveira Silva, Manassés Daniel Silva, José Ribamar Costa Ferreira Neto, Claudia Huerta de Nardi, Sabrina Moutinho Chabregas, William Lee Burnquist, Günter Kahl, Ana Maria Benko-Iseppon, and Ederson Akio Kido Copyright © 2014 Roberta Lane de Oliveira Silva et al. All rights reserved. Contributions of Nonleaf Organs to the Yield of Cotton Grown with Different Water Supply Sun, 01 Jun 2014 07:45:22 +0000 The objectives of this experiment were (i) to determine the effect of water supply on the photosynthetic capacity of leaves, bracts, capsule walls, and stalks of cotton at different growth stages and (ii) to determine the contributions of these nonleaf organs to whole plant photosynthesis. Water deficit reduced the total surface area per plant but increased the proportion of nonleaf to total plant surface area. Net photosynthetic rates of leaves declined rapidly beginning 25 days after anthesis. In contrast, the net photosynthetic rates of bracts and capsule walls were insensitive to soil moisture stress and decreased by a small amount between 25 and 45 days after anthesis. The relative contribution of bracts and stalks to canopy apparent photosynthesis (CAP) increased under water deficit conditions. Cotton seed weight in the conventional irrigation treatment decreased by 10.1–29.7% when the bolls (capsule walls plus bracts) were darkened and by 5.3–9.9% when the stalks were darkened. On a percentage basis, both boll photosynthesis and stalk photosynthesis contributed more to seed weight when the plants were grown under water deficit conditions rather than nondeficit conditions. In conclusion, nonleaf organs contribute significantly to yield when cotton plants are under water stress during late growth stages. Dongxia Zhan, Ying Yang, Yuanyuan Hu, Yali Zhang, Honghai Luo, and Wangfeng Zhang Copyright © 2014 Dongxia Zhan et al. All rights reserved. Hormonal and Hydroxycinnamic Acids Profiles in Banana Leaves in Response to Various Periods of Water Stress Tue, 27 May 2014 00:00:00 +0000 The pattern of change in the endogenous levels of several plant hormones and hydroxycinnamic acids in addition to growth and photosynthetic performance was investigated in banana plants (Musa acuminata cv. “Grand Nain”) subjected to various cycles of drought. Water stress was imposed by withholding irrigation for six periods with subsequent rehydration. Data showed an increase in abscisic acid (ABA) and indole-3-acetic acid (IAA) levels, a transient increase in salicylic acid (SA) concentration, and no changes in jasmonic acid (JA) after each period of drought. Moreover, the levels of ferulic (FA) and cinnamic acids (CA) were increased, and plant growth and leaf gas exchange parameters were decreased by drought conditions. Overall, data suggest an involvement of hormones and hydroxycinnamic acids in plant avoidance of tissue dehydration. The increase in IAA concentration might alleviate the senescence of survival leaves and maintained cell elongation, and the accumulation of FA and CA could play a key role as a mechanism of photoprotection through leaf folding, contributing to the effect of ABA on inducing stomatal closure. Data also suggest that the role of SA similarly to JA might be limited to a transient and rapid increase at the onset of the first period of stress. Jalel Mahouachi, María F. López-Climent, and Aurelio Gómez-Cadenas Copyright © 2014 Jalel Mahouachi et al. All rights reserved. Tropical Legume Crop Rotation and Nitrogen Fertilizer Effects on Agronomic and Nitrogen Efficiency of Rice Thu, 22 May 2014 09:04:45 +0000 Bush bean, long bean, mung bean, and winged bean plants were grown with N fertilizer at rates of 0, 2, 4, and 6 g N m−2 preceding rice planting. Concurrently, rice was grown with N fertilizer at rates of 0, 4, 8, and 12 g N m−2. No chemical fertilizer was used in the 2nd year of crop to estimate the nitrogen agronomic efficiency (NAE), nitrogen recovery efficiency (NRE), N uptake, and rice yield when legume crops were grown in rotation with rice. Rice after winged bean grown with N at the rate of 4 g N m−2 achieved significantly higher NRE, NAE, and N uptake in both years. Rice after winged bean grown without N fertilizer produced 13–23% higher grain yield than rice after fallow rotation with 8 g N m−2. The results revealed that rice after winged bean without fertilizer and rice after long bean with N fertilizer at the rate of 4 g N m−2 can produce rice yield equivalent to that of rice after fallow with N fertilizer at rates of 8 g N m−2. The NAE, NRE, and harvest index values for rice after winged bean or other legume crop rotation indicated a positive response for rice production without deteriorating soil fertility. Motior M. Rahman, Aminul M. Islam, Sofian M. Azirun, and Amru N. Boyce Copyright © 2014 Motior M. Rahman et al. All rights reserved. Cultivar Evaluation and Essential Test Locations Identification for Sugarcane Breeding in China Tue, 20 May 2014 12:20:49 +0000 The discrepancies across test sites and years, along with the interaction between cultivar and environment, make it difficult to accurately evaluate the differences of the sugarcane cultivars. Using a genotype main effect plus genotype-environment interaction (GGE) Biplot software, the yield performance data of seven sugarcane cultivars in the 8th Chinese National Sugarcane Regional Tests were analyzed to identify cultivars recommended for commercial release. Fn38 produced a high and stable sugar yield. Gn02-70 had the lowest cane yield with high stability. Yz06-407 was a high cane yield cultivar with poor stability in sugar yield. Yz05-51 and Lc03-1137 had an unstable cane yield but relatively high sugar yield. Fn39 produced stable high sugar yield with low and unstable cane production. Significantly different sugar and cane yields were observed across seasons due to strong cultivar-environment interactions. Three areas, Guangxi Chongzuo, Guangxi Baise, and Guangxi Hechi, showed better representativeness of cane yield and sugar content than the other four areas. On the other hand, the areas Guangxi Chongzuo, Yunnan Lincang, and Yunnan Baoshan showed strong discrimination ability, while the areas Guangxi Hechi and Guangxi Liuzhou showed poor discrimination ability. This study provides a reference for cultivar evaluation and essential test locations identification for sugarcane breeding in China. Jun Luo, Yong-Bao Pan, Liping Xu, Hua Zhang, Zhaonian Yuan, Zuhu Deng, Rukai Chen, and Youxiong Que Copyright © 2014 Jun Luo et al. All rights reserved. 100 Gy 60Co -Ray Induced Novel Mutations in Tetraploid Wheat Tue, 20 May 2014 00:00:00 +0000 10 accessions of tetraploid wheat were radiated with 100 Gy 60Co γ-ray. The germination energy, germination rate, special characters (secondary tillering, stalk with wax powder, and dwarf), meiotic process, and high-molecular-weight glutenin subunits (HMW-GSs) were observed. Different species has different radiation sensibility. With 1 seed germinated (5%), T. dicoccum (PI434999) is the most sensitive to this dose of radiation. With a seed germination rate of 35% and 40%, this dose also affected T. polonicum (As304) and T. carthlicum (As293). Two mutant dwarf plants, T. turgidum (As2255) 253-10 and T. polonicum (As302) 224-14, were detected. Abnormal chromosome pairings were observed in pollen mother cells of both T. dicoccoides (As835) 237-9 and T. dicoccoides (As838) 239-8 with HMW-GS 1Ax silent in seeds from them. Compared with the unirradiated seed of T. polonicum (As304) CK, a novel HMW-GS was detected in seed of T. polonicum (As304) 230-7 and its electrophoretic mobility was between 1By8 and 1Dy12 which were the HMW-GSs of Chinese Spring. These mutant materials would be resources for wheat breeding. Chuntao Yang, Jianshu Zhu, Yun Jiang, Xiaolu Wang, Mengxue Gu, Yi Wang, Houyang Kang, Xing Fan, Lina Sha, Haiqin Zhang, Pu Xuan, and Yonghong Zhou Copyright © 2014 Chuntao Yang et al. All rights reserved. Wheat Landraces Are Better Qualified as Potential Gene Pools at Ultraspaced rather than Densely Grown Conditions Sun, 11 May 2014 12:33:33 +0000 The negative relationship between the yield potential of a genotype and its competitive ability may constitute an obstacle to recognize outstanding genotypes within heterogeneous populations. This issue was investigated by growing six heterogeneous wheat landraces along with a pure-line commercial cultivar under both dense and widely spaced conditions. The performance of two landraces showed a perfect match to the above relationship. Although they lagged behind the cultivar by 64 and 38% at the dense stand, the reverse was true with spaced plants where they succeeded in out-yielding the cultivar by 58 and 73%, respectively. It was concluded that dense stand might undervalue a landrace as potential gene pool in order to apply single-plant selection targeting pure-line cultivars, attributable to inability of plants representing high yielding genotypes to exhibit their capacity due to competitive disadvantage. On the other side, the yield expression of individuals is optimized when density is low enough to preclude interplant competition. Therefore, the latter condition appears ideal to identify the most promising landrace for breeding and subsequently recognize the individuals representing the most outstanding genotypes. Elissavet G. Ninou, Ioannis G. Mylonas, Athanasios Tsivelikas, Parthenopi Ralli, Christos Dordas, and Ioannis S. Tokatlidis Copyright © 2014 Elissavet G. Ninou et al. All rights reserved. Effect of Different Arbuscular Mycorrhizal Fungi on Growth and Physiology of Maize at Ambient and Low Temperature Regimes Mon, 05 May 2014 14:18:39 +0000 The effect of four different arbuscular mycorrhizal fungi (AMF) on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a mixture of sandy and black soil for 5 weeks, and then half of the plants were exposed to low temperature for 1 week while the rest of the plants were grown under ambient temperature and severed as control. Different AMF resulted in different root colonization and low temperature significantly decreased AM colonization. Low temperature remarkably decreased plant height and total dry weight but increased root dry weight and root-shoot ratio. The AM plants had higher proline content compared with the non-AM plants. The maize plants inoculated with Glomus etunicatum and G. intraradices had higher malondialdehyde and soluble sugar contents under low temperature condition. The activities of catalase (CAT) and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology and AM symbiosis can improve maize seedlings tolerance to low temperature stress. Xiaoying Chen, Fengbin Song, Fulai Liu, Chunjie Tian, Shengqun Liu, Hongwen Xu, and Xiancan Zhu Copyright © 2014 Xiaoying Chen et al. All rights reserved. Effect of the Application of 1-Methylcyclopropene and Wax Emulsions on Proximate Analysis and Some Antioxidants of Soursop (Annona muricata L.) Sun, 27 Apr 2014 08:30:12 +0000 The effect of the application of 1-methylcyclopropene (1-MCP) and wax emulsions, alone or combined, on composition analysis, vitamin C, polyphenols, and antioxidant capacity of soursop was evaluated. Fruits were stored as follows: at 25°C (control), and at 16°C: fruits sprayed with candelilla or flava emulsions, fruits treated with 1500 nL/L of 1-MCP (20°C, 12 h), and fruits treated with 1-MCP and then sprayed with emulsions. Fruits were allowed to ripen and the edible part was used for analysis. Only fruits stored at 16°C without 1-MCP showed visible symptoms of chilling injury. Fruits treated with 1-MCP combined with flava emulsion maintained in greater extent their vitamin C content, dietary fiber, total phenolics content, and antioxidant activity. The combination of 1-MCP and emulsions can be utilized in postharvest handling of soursop because this combination can preserve its nutritional composition and antioxidant activity. Cristina L. Moreno-Hernández, Sonia G. Sáyago-Ayerdi, Hugo S. García-Galindo, Miguel Mata-Montes De Oca, and Efigenia Montalvo-González Copyright © 2014 Cristina L. Moreno-Hernández et al. All rights reserved. Assessing the MODIS Crop Detection Algorithm for Soybean Crop Area Mapping and Expansion in the Mato Grosso State, Brazil Thu, 10 Apr 2014 12:40:26 +0000 Estimations of crop area were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from moderate resolution imaging spectroradiometer (MODIS) images. Evaluation of the ability of the MODIS crop detection algorithm (MCDA) to estimate soybean crop areas was performed for fields in the Mato Grosso state, Brazil. Using the MCDA approach, soybean crop area estimations can be provided for December (first forecast) using images from the sowing period and for February (second forecast) using images from the sowing period and the maximum crop development period. The area estimates were compared to official agricultural statistics from the Brazilian Institute of Geography and Statistics (IBGE) and from the National Company of Food Supply (CONAB) at different crop levels from 2000/2001 to 2010/2011. At the municipality level, the estimates were highly correlated, with and RMSD = 13,142 ha. The MCDA was validated using field campaign data from the 2006/2007 crop year. The overall map accuracy was 88.25%, and the Kappa Index of Agreement was 0.765. By using pre-defined parameters, MCDA is able to provide the evolution of annual soybean maps, forecast of soybean cropping areas, and the crop area expansion in the Mato Grosso state. Anibal Gusso, Damien Arvor, Jorge Ricardo Ducati, Mauricio Roberto Veronez, and Luiz Gonzaga da Silveira Junior Copyright © 2014 Anibal Gusso et al. All rights reserved. Cloning and Characterization of Low-Molecular-Weight Glutenin Subunit Alleles from Chinese Wheat Landraces (Triticum aestivum L.) Thu, 10 Apr 2014 08:09:41 +0000 Low-molecular-weight glutenin subunits (LMW-GS) are of great importance in processing quality and participate in the formation of polymers in wheat. In this study, eight new LMW-GS alleles were isolated from Chinese wheat landraces (Triticum aestivum L.) and designated as Glu-A3-1a, Glu-A3-1b, Glu-B3-1a, Glu-B3-1b, Glu-B3-1c, Glu-D3-1a, Glu-D3-1b, and Glu-D3-1c, which were located at the Glu-A3, Glu-B3, and Glu-D3 loci, respectively. Based on the proteins encoded, the number of deduced amino acids of Glu-B3 alleles was approximately 50 more than those of Glu-A3 and Glu-D3 alleles. The first cysteine of Glu-A3 and Glu-D3 alleles was located at the N-terminal domain, while that of Glu-B3 alleles was found in the repetitive domain, which may lead to the different functioning in forming disulfide bonds. All the eight genes were LMW-m types and the new allele of Glu-B3-1a which had nine cysteine residues may be the desirable LMW-GS gene for improving bread-making quality. Hongqi Si, Manli Zhao, Xin Zhang, Guoliang Yao, Genlou Sun, and Chuanxi Ma Copyright © 2014 Hongqi Si et al. All rights reserved. Effects of Deep Tillage and Straw Returning on Soil Microorganism and Enzyme Activities Wed, 26 Mar 2014 13:52:06 +0000 Two field experiments were conducted for two years with the aim of studying the effects of deep tillage and straw returning on soil microorganism and enzyme activity in clay and loam soil. Three treatments, (1) conventional tillage (CT), shallow tillage and straw returning; (2) deep tillage (DT), deep tillage and straw returning; and (3) deep tillage with no straw returning (DNT), were carried out in clay and loam soil. The results showed that deep tillage and straw returning increased the abundance of soil microorganism and most enzyme activities. Deep tillage was more effective for increasing enzyme activities in clay, while straw returning was more effective in loam. Soil microorganism abundance and most enzyme activities decreased with the increase of soil depth. Deep tillage mainly affected soil enzyme activities in loam at the soil depth of 20–30 cm and in clay at the depth of 0–40 cm. Straw returning mainly affected soil microorganism and enzyme activities at the depths of 0–30 cm and 0–40 cm, respectively. Baoyi Ji, Hao Hu, Yali Zhao, Xinyuan Mu, Kui Liu, and Chaohai Li Copyright © 2014 Baoyi Ji et al. All rights reserved. Ultrastructural Localization of Polygalacturonase in Ethylene-Stimulated Abscission of Tomato Pedicel Explants Mon, 24 Mar 2014 07:52:55 +0000 Polygalacturonase (PG) is crucial in plant organ abscission process. This paper investigated the cellular and subcellular localization of PG in ethylene-stimulated abscission of tomato pedicel explants. Confocal laser scanning microscopy of abscission zone sections with the fluorescent probe Cy3 revealed that PG was initially accumulated in parenchyma cells in cortical and vascular tissues after 8 h of ethylene treatment and then extended throughout the abscission zone when the abscission zone separated at 24 h after ethylene treatment. At the subcellular level, transmission electron microscopy with immunogold staining showed that PG showed abundant accumulation in the cortical and vascular tissues at 8 h after ethylene treatment, and the distribution area extended to the central parenchyma cells at 16 h after ethylene treatment. In addition, PGs were observed in the distal and proximal parts of the tomato pedicel explants throughout the abscission process. The results provided a visualized distribution of PG in the pedicel abscission zone and proved that PG was closely related to abscission. Ming-Fang Qi, Tao Xu, Wei-Zhi Chen, and Tian-lai Li Copyright © 2014 Ming-Fang Qi et al. All rights reserved. Fertilization and Colors of Plastic Mulch Affect Biomass and Essential Oil of Sweet-Scented Geranium Sun, 16 Mar 2014 08:13:31 +0000 Sweet-scented geranium (Pelargonium graveolens L’Hér), a plant belonging to the Geraniaceae family, has medicinal and aromatic properties and is widely used in the cosmetic, soap, perfume, aromatherapy, and food industries. The aim of this study was to evaluate the influence of fertilization and the use of different colors of plastic mulch on sweet-scented geranium biomass and essential oil. Three colors of plastic mulch (black, white, and silver-colored) and a control without plastic mulch were assessed along with three fertilizers (20,000 L·ha−1 of cattle manure; 1,000 kg·ha−1 of NPK 3-12-6; and 20,000 L·ha−1 of cattle manure + 1,000 kg·ha−1 of NPK 3-12-6 fertilizer) and a control without fertilizer. The absence of a soil cover negatively influenced the agronomical variables, while coverage with plastic mulch was associated with increased biomass. The use of fertilizer had no effect on the evaluated agronomic variables. When cattle manure and NPK 3-12-6 were used together, combined with white or black plastic mulch, the highest yields of essential oil were obtained. For the silver-colored plastic mulch, higher amounts of essential oil (6,9-guaiadien) were obtained with mineral fertilizer. Anderson de Carvalho Silva, Arie Fitzgerald Blank, Wallace Melo dos Santos, Paloma Santana Prata, Péricles Barreto Alves, and Maria de Fátima Arrigoni-Blank Copyright © 2014 Anderson de Carvalho Silva et al. All rights reserved. Influence of Pre- and Postharvest Summer Pruning on the Growth, Yield, Fruit Quality, and Carbohydrate Content of Early Season Peach Cultivars Mon, 10 Mar 2014 09:04:11 +0000 Winter and summer pruning are widely applied processes in all fruit trees, including in peach orchard management. This study was conducted to determine the effects of summer prunings (SP), as compared to winter pruning (WP), on shoot length, shoot diameter, trunk cross sectional area (TCSA) increment, fruit yield, fruit quality, and carbohydrate content of two early ripening peach cultivars (“Early Red” and “Maycrest”) of six years of age, grown in semiarid climate conditions, in 2008 to 2010. The trees were grafted on GF 677 rootstocks, trained with a central leader system, and spaced 5 × 5 m apart. The SP carried out after harvesting in July and August decreased the shoot length significantly; however, it increased its diameter. Compared to 2009, this effect was more marked in year 2010. In general, control and winter pruned trees of both cultivars had the highest TCSA increment and yield efficiency. The SP increased the average fruit weight and soluble solids contents (SSC) more than both control and WP. The titratable acidity showed no consistent response to pruning time. The carbohydrate accumulation in shoot was higher in WP and in control than in SP trees. SP significantly affected carbohydrate accumulation; postharvest pruning showed higher carbohydrate content than preharvest pruning. Ali Ikinci Copyright © 2014 Ali Ikinci. All rights reserved. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation Wed, 05 Mar 2014 07:33:24 +0000 Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM), furrow irrigation with nonmulching (FIN), and drip irrigation with plastic mulching (DI). Compared with the conventional flooding (CF) treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate , lower maximum quantum yield , and lower effective quantum yield of PSII photochemistry (). And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC). Under non-flooded irrigation, the , , and significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA) were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation. Haibing He, Ru Yang, Biao Jia, Lin Chen, Hua Fan, Jing Cui, Dong Yang, Menglong Li, and Fu-Yu Ma Copyright © 2014 Haibing He et al. All rights reserved. Research on the Food Security Condition and Food Supply Capacity of Egypt Tue, 04 Mar 2014 15:35:57 +0000 Food security is chronically guaranteed in Egypt because of the food subsidy policy of the country. However, the increasing Egyptian population is straining the food supply. To study changes in Egyptian food security and future food supply capacity, we analysed the historical grain production, yield per unit, grain-cultivated area, and per capita grain possession of Egypt. The GM model of the grey system was used to predict the future population. Thereafter, the result was combined with scenario analysis to forecast the grain possession and population carrying capacity of Egypt under different scenarios. Results show that the increasing population and limitations in cultivated land will strain Egyptian food security. Only in high cultivated areas and high grain yield scenarios before 2020, or in high cultivated areas and mid grain yield scenarios before 2015, can food supply be basically satisfied (assurance rate ≥ 80%) under a standard of 400 kg per capita. Population carrying capacity in 2030 is between 51.45 and 89.35 million. Thus, we propose the use of advanced technologies in agriculture and the adjustment of plant structure and cropping systems to improve land utilization efficiency. Furthermore, urbanization and other uses of cultivated land should be strictly controlled to ensure the planting of grains. Jian Deng, Youzhen Xiang, Wenhui Hao, Yongzhong Feng, Gaihe Yang, Guangxin Ren, and Xinhui Han Copyright © 2014 Jian Deng et al. All rights reserved. The Effect of Water Stress on Some Morphological, Physiological, and Biochemical Characteristics and Bud Success on Apple and Quince Rootstocks Tue, 04 Mar 2014 12:41:33 +0000 The effects of different water stress (control, medium, and severe) on some morphological, physiological, and biochemical characteristics and bud success of M9 apple and MA quince rootstocks were determined. The results showed that water stress significantly affected most morphological, physiological, and biochemical characteristics as well as budding success on the both rootstocks. The increasing water stress decreased the relative shoot length, diameter, and plant total fresh and dry weights. Leaf relative water content and chlorophyll index decreased while electrolyte leakage increased with the increase of water stress in both rootstocks. An increase in water stress also resulted in reduction in budding success in Vista Bella/M9 (79.33% and 46.67%) and Santa Maria/MA (70.33% and 15.33%) combinations. However, the water stress in Santa Maria/MA was more prominent. The increase in water stress resulted in higher peroxidase activities as well as phenol contents in both rootstocks. Although catalase activity, anthocyanin, and proline contents increased with the impact of stress, this was not statistically significant. The results suggest that the impact of stress increased with the increase of water stress; therefore, growers should be careful when using M9 and MA rootstocks in both nursery and orchards where water scarcity is present. Ibrahim Bolat, Murat Dikilitas, Sezai Ercisli, Ali Ikinci, and Tahsin Tonkaz Copyright © 2014 Ibrahim Bolat et al. All rights reserved. Use of a Digital Camera to Monitor the Growth and Nitrogen Status of Cotton Thu, 27 Feb 2014 16:15:35 +0000 The main objective of this study was to develop a nondestructive method for monitoring cotton growth and N status using a digital camera. Digital images were taken of the cotton canopies between emergence and full bloom. The green and red values were extracted from the digital images and then used to calculate canopy cover. The values of canopy cover were closely correlated with the normalized difference vegetation index and the ratio vegetation index and were measured using a GreenSeeker handheld sensor. Models were calibrated to describe the relationship between canopy cover and three growth properties of the cotton crop (i.e., aboveground total N content, LAI, and aboveground biomass). There were close, exponential relationships between canopy cover and three growth properties. And the relationships for estimating cotton aboveground total N content were most precise, the coefficients of determination () value was 0.978, and the root mean square error (RMSE) value was 1.479 g m−2. Moreover, the models were validated in three fields of high-yield cotton. The result indicated that the best relationship between canopy cover and aboveground total N content had an value of 0.926 and an RMSE value of 1.631 g m−2. In conclusion, as a near-ground remote assessment tool, digital cameras have good potential for monitoring cotton growth and N status. Biao Jia, Haibing He, Fuyu Ma, Ming Diao, Guiying Jiang, Zhong Zheng, Jin Cui, and Hua Fan Copyright © 2014 Biao Jia et al. All rights reserved. Potential Regulatory Role of Gibberellic and Humic Acids in Sprouting of Chlorophytum borivilianum Tubers Thu, 13 Feb 2014 00:00:00 +0000 Tubers of safed musli (Chlorophytum borivilianum) were immersed in three different concentrations of gibberellic acid (GA3) or humic acid (HA) prior to planting. The highest concentration of GA3 (20 mg ) and all concentrations of HA (5, 10, and 15%) appeared to hasten tuber sprouting and promote uniform sprouting pattern. The use of 20 mg  GA3 or 15% HA successfully improved sprouting and mean sprouting time. Safed musli growth and development was improved through the increase in the number of leaves, total leaf area, leaf area index, and total fibrous root length. This directly influenced the number of new tubers formed. The use of 20 mg  GA3 or 15% HA gave similar response with nonsignificant difference among them. However, due to the cost of production, the result from this study suggests that 15% HA should be used to obtain improved sprouting percentage, homogeneous stand establishment, efficient plant growth and development, and increased yield of safed musli. Jaafar Juju Nakasha, Uma Rani Sinniah, Adam Puteh, and Siti Aishah Hassan Copyright © 2014 Jaafar Juju Nakasha et al. All rights reserved. Purslane Weed (Portulaca oleracea): A Prospective Plant Source of Nutrition, Omega-3 Fatty Acid, and Antioxidant Attributes Mon, 10 Feb 2014 13:21:51 +0000 Purslane (Portulaca oleracea L.) is an important plant naturally found as a weed in field crops and lawns. Purslane is widely distributed around the globe and is popular as a potherb in many areas of Europe, Asia, and the Mediterranean region. This plant possesses mucilaginous substances which are of medicinal importance. It is a rich source of potassium (494 mg/100 g) followed by magnesium (68 mg/100 g) and calcium (65 mg/100 g) and possesses the potential to be used as vegetable source of omega-3 fatty acid. It is very good source of alpha-linolenic acid (ALA) and gamma-linolenic acid (LNA, 18 : 3 w3) (4 mg/g fresh weight) of any green leafy vegetable. It contained the highest amount (22.2 mg and 130 mg per 100 g of fresh and dry weight, resp.) of alpha-tocopherol and ascorbic acid (26.6 mg and 506 mg per 100 g of fresh and dry weight, resp.). The oxalate content of purslane leaves was reported as 671–869 mg/100 g fresh weight. The antioxidant content and nutritional value of purslane are important for human consumption. It revealed tremendous nutritional potential and has indicated the potential use of this herb for the future. Md. Kamal Uddin, Abdul Shukor Juraimi, Md Sabir Hossain, Most. Altaf Un Nahar, Md. Eaqub Ali, and M. M. Rahman Copyright © 2014 Md. Kamal Uddin et al. All rights reserved. Performance of Different Herbicides in Dry-Seeded Rice in Bangladesh Thu, 06 Feb 2014 09:26:13 +0000 A field study was conducted in the boro season of 2011-12 and aman season of 2012 at Jessore, Bangladesh, to evaluate the performance of sequential applications of preemergence herbicides (oxadiargyl 80 g ai ha−1, pendimethalin 850 g ai ha−1, acetachlor + bensulfuranmethyl 240 g ai ha−1, and pyrazosulfuron 15 g ai ha−1) followed by a postemergence herbicide (ethoxysulfuron 18 g ai ha−1) in dry-seeded rice. All evaluated herbicides reduced weed density and biomass by a significant amount. Among herbicides, pendimethalin, oxadiargyl, and acetachlor + bensulfuranmethyl performed very well against grasses; pyrazosulfuron, on the other hand, was not effective. The best herbicide for broadleaf weed control was oxadiargyl (65–85% control); pendimethalin and acetachlor + bensulfuraonmethyl were not effective for this purpose. The best combination for weed control was oxadiargyl followed by ethoxysulfuron in the boro season and oxadiargyl followed by a one-time hand weeding in the aman season. Compared with the partial weedy plots (hand weeded once), oxadiargyl followed by ethoxysulfuron (4.13 t ha−1) provided a 62% higher yield in the boro season while oxadiargyl followed by a one-time hand weeding (4.08 t ha−1) provided a 37% higher yield in the aman season. Sharif Ahmed and Bhagirath Singh Chauhan Copyright © 2014 Sharif Ahmed and Bhagirath Singh Chauhan. All rights reserved. Fumigant Antifungal Activity of Corymbia citriodora and Cymbopogon nardus Essential Oils and Citronellal against Three Fungal Species Thu, 30 Jan 2014 09:12:55 +0000 Corymbia citriodora and Cymbopogon nardus essential oils samples were analyzed by GC and GC-MS and their qualitative and quantitative compositions established. The main component of essential oils of C. citriodora and C. nardus was citronellal, at 61.78% and 36.6%, respectively. The essential oils and citronellal were tested for their fumigant antifungal activity against Pyricularia (Magnaporthe) grisea, Aspergillus spp., and Colletotrichum musae. The minimum inhibitory concentration (MIC) ranged from 100 to 200 ppm for the essential oils and 25 to 50 mg·mL−1 for citronellal. The contact assay using the essential oils and citronellal showed growth inhibition of the three fungal species. However, a concentration of 1.47 mg·mL−1 only reduced the inhibition of Aspergillus growth to 90% at 14 days of exposure. For the fumigant assay, 0.05, 0.11, and 0.23 mg·mL−1 of essential oils and citronellal drastically affected growth of P. grisea, Aspergillus spp., and C. musae. Harmful effects on the sporulation and germination of the three fungi were seen, and there was complete inhibition at 0.15 mg·mL−1 with both oils and citronellal. This showed that the crude component of essential oils of C. citriodora and C. nardus markedly suppressed spore production, germination, and growth inhibition of P. grisea, Aspergillus spp., and Colletotrichum musae. Raimundo Wagner de S. Aguiar, Marcio A. Ootani, Sérgio Donizeti Ascencio, Talita P. S. Ferreira, Manoel M. dos Santos, and Gil R. dos Santos Copyright © 2014 Raimundo Wagner de S. Aguiar et al. All rights reserved. Vigor for In Vitro Culture Traits in S. melongena  ×  S. aethiopicum Hybrids with Potential as Rootstocks for Eggplant Mon, 27 Jan 2014 08:50:04 +0000 Hybrids of Solanum melongena and S. aethiopicum are of interest as rootstocks of eggplant, as they are highly vigorous and can incorporate resistance to several diseases. However, hybridization between both species is difficult. Therefore, protocols for in vitro culture are of great interest for their micropropagation and biotechnological breeding. We assessed the organogenesis response from leaf explants in four interspecific hybrids and in their parents testing two organogenic media: SIM-A, containing 6-benzylaminopurine and kinetin, and SIM-B, which contains thidiazuron. A higher regeneration capacity in the hybrids compared to their parents was observed. Whereas in interspecific hybrids and in one accession of S. melongena similar regeneration rates were observed for SIM-A and SIM-B, higher regeneration was found in the rest of genotypes when thidiazuron was used. Rooting ability in the interspecific hybrids was lower in in vitro micropropagated plants (35–60%) than in plants regenerated from explants (100%). The addition of indolbutiric acid (1 mg L−1) induced roots in nonrooted genotypes. In summary, we have adjusted in vitro culture conditions for regenerating and rooting S. melongena × S. aethiopicum hybrids. We have also demonstrated that these hybrids are heterotic for regeneration, which may be of interest for basic science studies. Irene Calvo-Asensio, Jaime Prohens, and Carmina Gisbert Copyright © 2014 Irene Calvo-Asensio et al. All rights reserved. Identification of Chrysanthemum (Chrysanthemum morifolium) Self-Incompatibility Mon, 27 Jan 2014 08:35:51 +0000 There has been a heated argument over self-incompatibilityof chrysanthemum (Chrysanthemum morifolium) among chrysanthemum breeders. In order to solve the argument, we investigated pistil receptivity, seed set, and compatible index of 24 chrysanthemum cultivars. It was found that the 24 cultivars averagely had 3.7–36.3 pollen grains germinating on stigmas at 24 hours after self-pollination through the fluorescence microscope using aniline blue staining method. However, only 10 of them produced self-pollinated seeds, and their seed sets and compatible indexes were 0.03–56.50% and 0.04–87.50, respectively. The cultivar “Q10-33-1” had the highest seed set (56.50%) and compatible index (87.50), but ten of its progeny had a wide range of separation in seed set (0–37.23%) and compatible index (0–68.65). The results indicated that most of chrysanthemum cultivars were self-incompatible, while a small proportion of cultivars were self-compatible. In addition, there is a comprehensive separation of self-incompatibility among progeny from the same self-pollinated self-compatible chrysanthemum cultivar. Therefore, it is better to emasculate inflorescences during chrysanthemum hybridization breeding when no information concerning its self-incompatibility characteristics is available. However, if it is self-incompatible and propagated by vegetative methods, it is unnecessary to carry out emasculation when it is used as a female plant during hybridization breeding. Fan Wang, Feng-Jiao Zhang, Fa-Di Chen, Wei-Min Fang, and Nian-Jun Teng Copyright © 2014 Fan Wang et al. All rights reserved. Brachiaria ruziziensis Responses to Different Fertilization Doses and to the Attack of Mahanarva spectabilis (Hemiptera: Cercopidae) Nymphs and Adults Wed, 22 Jan 2014 11:31:08 +0000 Cropping practices are necessary in order to help reduce the population of pest insect, such as the induction of resistance through fertilization. Therefore, this study aimed to assess alterations on the production and quality of Brachiaria ruziziensis when receiving the fertilization composed by the macronutrients NPK and/or exposed to the attack of Mahanarva spectabilis nymphs and adults. B. ruziziensis plants were fertilized according to the recommendation (R), half of the recommended fertilization (H), or non-fertilization (C). They were also exposed to different M. spectabilis nymph and adult densities. The damage, regrowth, and bromatological components were evaluated. The fertilization treatment promoted a higher M. spectabilis nymph survival on B. ruziziensis; however, it reduced the damage caused by the forage exposed to nymphs and adults of pest insect, and it did not alter the quality of the signal grass. Moreover, the fertilization treatment enabled forage recovery, even when exposed to 5 nymphs or 10 spittlebug adults. Daniela de Melo Aguiar, Alexander Machado Auad, Marcy das Graças Fonseca, and Melissa Vieira Leite Copyright © 2014 Daniela de Melo Aguiar et al. All rights reserved. Response of Nitrogen and Potassium Fertigation to “Waris” Almond (Prunus dulcis) under Northwestern Himalayan Region of India Wed, 22 Jan 2014 06:52:14 +0000 A field experiment was conducted on almond (Prunus dulcis) to study the effect of N&K fertigation on growth, yields and leaf nutrient status over two seasons (2011 and 2012) in Srinagar, Jammu and Kashmir, India. There were six treatments, namely, T1—100% recommended dose of fertilizers as soil application, T2—100% RDF through fertigations, T3—75% RDF through fertigation, T4—75% RDF through fertigation (split application), T5—50% RDF through fertigation and T6—50% RDF through fertigation (split application) with three replications under randomized block design. The results indicated that the maximum tree height (3.21 m and 3.56 m), nut weight (2.73 g and 1.94 g), nut yield (2.41 kg/tree and 5.98 kg/tree; 2.67 t/ha and 6.64 t/ha), and leaf nutrient content (2.34 and 2.38% N; 0.14 and 0.17% P; 1.37 and 1.41% K) were recorded in T4 treatment, whereas the highest TCSA of main trunk, primary, secondary, and tertiary branches (72.67 and 90.28 cm2; 16.75 and 24.26 cm2; 3.83 and 7.49 cm2; 0.47 and 1.23 cm2), canopy volume (7.15 and 8.11 m3), and fruit number (990 and 3083/tree) were recorded in T2 in almond variety Waris. Dinesh Kumar and N. Ahmed Copyright © 2014 Dinesh Kumar and N. Ahmed. All rights reserved. A Strategy for Finding the Optimal Scale of Plant Core Collection Based on Monte Carlo Simulation Mon, 20 Jan 2014 12:42:33 +0000 Core collection is an ideal resource for genome-wide association studies (GWAS). A subcore collection is a subset of a core collection. A strategy was proposed for finding the optimal sampling percentage on plant subcore collection based on Monte Carlo simulation. A cotton germplasm group of 168 accessions with 20 quantitative traits was used to construct subcore collections. Mixed linear model approach was used to eliminate environment effect and GE (genotype × environment) effect. Least distance stepwise sampling (LDSS) method combining 6 commonly used genetic distances and unweighted pair-group average (UPGMA) cluster method was adopted to construct subcore collections. Homogeneous population assessing method was adopted to assess the validity of 7 evaluating parameters of subcore collection. Monte Carlo simulation was conducted on the sampling percentage, the number of traits, and the evaluating parameters. A new method for “distilling free-form natural laws from experimental data” was adopted to find the best formula to determine the optimal sampling percentages. The results showed that coincidence rate of range (CR) was the most valid evaluating parameter and was suitable to serve as a threshold to find the optimal sampling percentage. The principal component analysis showed that subcore collections constructed by the optimal sampling percentages calculated by present strategy were well representative. Jiancheng Wang, Yajing Guan, Yang Wang, Liwei Zhu, Qitian Wang, Qijuan Hu, and Jin Hu Copyright © 2014 Jiancheng Wang et al. All rights reserved. In Vitro Conservation of Sweet Potato Genotypes Sun, 19 Jan 2014 14:16:07 +0000 The aim of this study was to develop a protocol for the in vitro conservation of sweet potato genotypes using the slow growth technique. The first experiment was conducted in a factorial scheme, testing four genotypes (IPB-007, IPB-052, IPB-072, and IPB-137), five concentrations of abscisic acid (ABA) (0.0, 1.0, 2.0, 4.0, and 8.0 mg·L−1), and two temperatures (18 and 25°C). The second experiment was conducted in a factorial scheme at 18°C, testing four genotypes (IPB-007, IPB-052, IPB-072, and IPB-137), three variations of MS salts (50, 75, and 100%), and three concentrations of sucrose (10, 20, and 30 g·L−1). Every three months, we evaluated the survival (%), shoot height, and shoot viability. In vitro conservation of the sweet potato genotypes IPB-052 and IPB-007 was obtained over three and six months, respectively, using MS medium plus 2.0 mg·L−1 of ABA at either 18 or 25°C. Genotypes IPB-072 and IPB-137 can be kept for three and six months, respectively, in MS medium without ABA at 18°C. It is possible to store IPB-052 and IPB-072 for six months and IPB-007 and IPB-137 for nine months using 30 g·L−1 of sucrose and 50% MS salts. Maria de Fátima Arrigoni-Blank, Fernanda Ferreira Tavares, Arie Fitzgerald Blank, Maria Clézia dos Santos, Thays Saynara Alves Menezes, and Aléa Dayane Dantas de Santana Copyright © 2014 Maria de Fátima Arrigoni-Blank et al. All rights reserved. The Role of Plant Cell Wall Proteins in Response to Salt Stress Sun, 19 Jan 2014 13:06:49 +0000 Contemporary agriculture is facing new challenges with the increasing population and demand for food on Earth and the decrease in crop productivity due to abiotic stresses such as water deficit, high salinity, and extreme fluctuations of temperatures. The knowledge of plant stress responses, though widely extended in recent years, is still unable to provide efficient strategies for improvement of agriculture. The focus of study has been shifted to the plant cell wall as a dynamic and crucial component of the plant cell that could immediately respond to changes in the environment. The investigation of plant cell wall proteins, especially in commercially important monocot crops revealed the high involvement of this compartment in plants stress responses, but there is still much more to be comprehended. The aim of this review is to summarize the available data on this issue and to point out the future areas of interest that should be studied in detail. Lyuben Zagorchev, Plamena Kamenova, and Mariela Odjakova Copyright © 2014 Lyuben Zagorchev et al. All rights reserved. Mathematical Model of Solid Food Pasteurization by Ohmic Heating: Influence of Process Parameters Sun, 19 Jan 2014 00:00:00 +0000 Pasteurization of a solid food undergoing ohmic heating has been analysed by means of a mathematical model, involving the simultaneous solution of Laplace’s equation, which describes the distribution of electrical potential within a food, the heat transfer equation, using a source term involving the displacement of electrical potential, the kinetics of inactivation of microorganisms likely to be contaminating the product. In the model, thermophysical and electrical properties as function of temperature are used. Previous works have shown the occurrence of heat loss from food products to the external environment during ohmic heating. The current model predicts that, when temperature gradients are established in the proximity of the outer ohmic cell surface, more cold areas are present at junctions of electrodes with lateral sample surface. For these reasons, colder external shells are the critical areas to be monitored, instead of internal points (typically geometrical center) as in classical pure conductive heat transfer. Analysis is carried out in order to understand the influence of pasteurisation process parameters on this temperature distribution. A successful model helps to improve understanding of these processing phenomenon, which in turn will help to reduce the magnitude of the temperature differential within the product and ultimately provide a more uniformly pasteurized product. Francesco Marra Copyright © 2014 Francesco Marra. All rights reserved. Effects of Wheat Bug (Eurygaster spp. and Aelia spp.) Infestation in Preharvest Period on Wheat Technological Quality and Gluten Composition Wed, 15 Jan 2014 16:00:06 +0000 The effects of wheat bug infestation (Eurygaster spp. and Aelia spp.) on the composition of wheat gluten proteins and its influence on flour technological quality were investigated in the present study. Wheat samples of six wheat varieties, collected from two localities in northern Serbia, were characterized by significantly different level of wheat bug infestation. Composition of wheat gluten proteins was determined using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE), while the selected parameters of technological quality were determined according to standard and modified empirical rheological methods (Farinograph, Extensograph, Alveograph, and Gluten Index). The surface morphology of the selected samples was viewed using scanning electron microscopy (SEM). Wheat from wheat bug-infested locality regardless of the variety had deteriorated technological quality expressed with higher Farinograph softening degree, lower or immeasurable Extensograph energy, and Alveograph deformation energy. The most important changes in the gluten proteins composition of bug-infested wheat were related to gliadin subunits with molecular weights below 75 kDa, which consequently caused deterioration of uniaxial and biaxial extensibility and dough softening during mixing. Aleksandra M. Torbica, Jasna S. Mastilović, Milica M. Pojić, and Žarko S. Kevrešan Copyright © 2014 Aleksandra M. Torbica et al. All rights reserved. The Impact of Hybridization on the Volatile and Sensorial Profile of Ocimum basilicum L. Sun, 12 Jan 2014 09:59:44 +0000 The aim of the present study was to investigate the volatile and sensorial profile of basil (Ocimum basilicum L.) by quantitative descriptive analysis (QDA) of the essential oil of three hybrids (“Cinnamon” × “Maria Bonita,” “Sweet Dani” × “Cinnamon,” and “Sweet Dani” × “Maria Bonita”). Twelve descriptive terms were developed by a selected panel that also generated the definition of each term and the reference samples. The data were subjected to ANOVA, Tukey’s test, and principal component analysis. The hybrid “Cinnamon” × “Maria Bonita” exhibited a stronger global aroma that was less citric than the other samples. Hybridization favored the generation of novel compounds in the essential oil of the hybrid “Sweet Dani” × “Maria Bonita,” such as canfora and (E)-caryophyllene; (E)-caryophyllene also was a novel compound in the hybrid “Sweet Dani” × “Cinnamon”; this compound was not present in the essential oils of the parents. Andréa Santos da Costa, Maria de Fátima Arrigoni-Blank, Maria Aparecida Azevedo Pereira da Silva, Mércia Freitas Alves, Darlisson de Alexandria Santos, Péricles Barreto Alves, and Arie Fitzgerald Blank Copyright © 2014 Andréa Santos da Costa et al. All rights reserved. Seasonal Variation of the Canopy Structure Parameters and Its Correlation with Yield-Related Traits in Sugarcane Thu, 26 Dec 2013 11:32:56 +0000 Population structure determines sugarcane yield, of which canopy structure is a key component. To fully understand the relations between sugarcane yield and parameters of the canopy structure, 17 sugarcane varieties were investigated at five growth stages. The results indicated that there were significant differences between characterized parameters among sugarcane populations at different growth stages. During sugarcane growth after planting, leaf area index (LAI) and leaf distribution (LD) increased, while transmission coefficient for diffuse radiation (TD), mean foliage inclination angle (MFIA), transmission coefficient for solar beam radiation penetration (TR), and extinction coefficient () decreased. Significant negative correlations were found between sugarcane yield and MFIA, TD, TR, and at the early elongation stage, while a significant positive correlation between sugarcane yield and LD was found at the same stage. A regression for sugarcane yield, with relative error of yield fitting less than 10%, was successfully established: sugarcane yield = 2380.12 + 46.25 × LD − 491.82 × LAI + 1.36 × MFIA + 614.91 × TD − 1908.05 × TR − 182.53 ×   + 1281.75 × LD − 1.35 × MFIA + 831.2 × TR − 407.8 ×   + 8.21 × MFIA − 834.50 × TD − 1695.49 ×  . Jun Luo, Youxiong Que, Hua Zhang, and Liping Xu Copyright © 2013 Jun Luo et al. All rights reserved. The Damage Capacity of Mahanarva spectabilis (Distant, 1909) (Hemiptera: Cercopidae) Adults on Brachiaria ruziziensis Pasture Sun, 15 Dec 2013 13:29:31 +0000 The aim of this study was to determine the damage caused by adult Mahanarva spectabilis (Distant, 1909) (Hemiptera: Cercopidae) on Brachiaria ruziziensis (Germain & Evard) under field conditions. A total of 0, 4, 8, 12, or 16 M. spectabilis adults per plot were maintained for 6 days. Thereafter, the insects were removed from the plant, and the following parameters were evaluated: chlorophyll content, damage score, dry as well as fresh weights, percentage of shoots’ dry matter, and the forage’s ability to regrow. The chlorophyll content was significantly reduced; the damage score and percentage of dry matter in plants increased depending on the increased insect infestation density after 6 days of exposure. In contrast, no change was observed on the B. ruziziensis fresh and dry weights as well as the regrowth capacity depending on the M. spectabilis infestation densities. Attacks by 8 adult M. spectabilis per clump of B. ruziziensis with an average of 80 tillers for 6 days were sufficient to reduce the chlorophyll content and the functional plant loss index. This density can be a reference for spittlebug integrated management in Brachiaria. Tiago Teixeira Resende, Alexander Machado Auad, Marcy das Graças Fonseca, Fausto Souza Sobrinho, Dayane Ribeiro dos Santos, and Sandra Elisa Barbosa da Silva Copyright © 2013 Tiago Teixeira Resende et al. All rights reserved. Conducting an Agricultural Life Cycle Assessment: Challenges and Perspectives Tue, 10 Dec 2013 11:34:23 +0000 Agriculture is a diverse field that produces a wide array of products vital to society. As global populations continue to grow the competition for natural resources will increase pressure on agricultural production of food, fiber, energy, and various high value by-products. With elevated concerns related to environmental impacts associated with the needs of a growing population, a life cycle assessment (LCA) framework can be used to determine areas of greatest impact and compare reduction strategies for agricultural production systems. The LCA methodology was originally developed for industrial operations but has been expanded to a wider range of fields including agriculture. There are various factors that increase the complexity of determining impacts associated with agricultural production including multiple products from a single system, regional and crop specific management techniques, temporal variations (seasonally and annually), spatial variations (multilocation production of end products), and the large quantity of nonpoint emission sources. The lack of consistent methodology of some impacts that are of major concern to agriculture (e.g., land use and water usage) increases the complexity of this analysis. This paper strives to review some of these issues and give perspective to the LCA practitioner in the field of agriculture. Kevin R. Caffrey and Matthew W. Veal Copyright © 2013 Kevin R. Caffrey and Matthew W. Veal. All rights reserved. Citrulline Is an Important Biochemical Indicator in Tolerance to Saline and Drought Stresses in Melon Sat, 30 Nov 2013 18:29:05 +0000 Salt- and drought-induced alterations in citrulline were assessed in 4 local melon genotypes, 2 sensitive (CU-52, CU-94) and 2 tolerant (CU-196, CU-280), grown in vermiculite in a growth chamber. Salt and drought stresses were started using 30-day-old plants, with 250 mM NaCI and 45 mM PEG (−1.0 MPa) and continued for 12 days. After 12 days under salt and drought conditions, the citrulline contents were increased in the tolerant CU 196 to 25.10 μmol gDW−1 and 24.10 μmol gDW−1 for salt and drought stresses, respectively. However, the citrulline contents of the sensitive CU-52 were 11.68 μmol gDW−1 and 11.76 μmol gDW−1 for salt and drought, respectively. The striking alteration was obtained in the citrulline accumulation. The tolerant melons accumulated 2 times more citrulline than the sensitive melons. For assessing or screening melon genotypes in a large number of accessions or breeding lines for their tolerance to salinity and drought during their young plant stage, the amount of citrulline accumulation in response to the given treatments might be considered as a novel biochemical indicator of interest in early selection studies. Sebnem Kusvuran, H. Yildiz Dasgan, and Kazim Abak Copyright © 2013 Sebnem Kusvuran et al. All rights reserved. Lignin: Characterization of a Multifaceted Crop Component Thu, 14 Nov 2013 12:33:33 +0000 Lignin is a plant component with important implications for various agricultural disciplines. It confers rigidity to cell walls, and is therefore associated with tolerance to abiotic and biotic stresses and the mechanical stability of plants. In animal nutrition, lignin is considered an antinutritive component of forages as it cannot be readily fermented by rumen microbes. In terms of energy yield from biomass, the role of lignin depends on the conversion process. It contains more gross energy than other cell wall components and therefore confers enhanced heat value in thermochemical processes such as direct combustion. Conversely, it negatively affects biological energy conversion processes such as bioethanol or biogas production, as it inhibits microbial fermentation of the cell wall. Lignin from crop residues plays an important role in the soil organic carbon cycling, as it constitutes a recalcitrant carbon pool affecting nutrient mineralization and carbon sequestration. Due to the significance of lignin in several agricultural disciplines, the modification of lignin content and composition by breeding is becoming increasingly important. Both mapping of quantitative trait loci and transgenic approaches have been adopted to modify lignin in crops. However, breeding goals must be defined considering the conflicting role of lignin in different agricultural disciplines. Michael Frei Copyright © 2013 Michael Frei. All rights reserved. Recent Achievement in Gene Cloning and Functional Genomics in Soybean Thu, 07 Nov 2013 09:09:33 +0000 Soybean is a model plant for photoperiodism as well as for symbiotic nitrogen fixation. However, a rather low efficiency in soybean transformation hampers functional analysis of genes isolated from soybean. In comparison, rapid development and progress in flowering time and photoperiodic response have been achieved in Arabidopsis and rice. As the soybean genomic information has been released since 2008, gene cloning and functional genomic studies have been revived as indicated by successfully characterizing genes involved in maturity and nematode resistance. Here, we review some major achievements in the cloning of some important genes and some specific features at genetic or genomic levels revealed by the analysis of functional genomics of soybean. Zhengjun Xia, Hong Zhai, Shixiang Lü, Hongyan Wu, and Yupeng Zhang Copyright © 2013 Zhengjun Xia et al. All rights reserved. Germination Response of MR 219 Rice Variety to Different Exposure Times and Periods of 2450 MHz Microwave Frequency Wed, 06 Nov 2013 17:22:33 +0000 Germination is a key process in plants' phenological cycles. Accelerating this process could lead to improvment of the seedling growth as well as the cultivation efficiency. To achieve this, the effect of microwave frequency on the germination of rice seeds was examined. The physiological feedbacks of the MR 219 rice variety in terms of seed germination rate (GR), germination percentage (GP), and mean germination time (MGT) were analyzed by exposing its seeds to 2450 MHz of microwave frequency for one, four, seven, and ten hours. It was revealed that exposing the seeds to the microwave frequency for 10 hours resulted in the highest GP. This treatment led to 100% of germination after three days with a mean germination time of 2.1 days. Although the other exposure times of microwave frequency caused the moderate effects on germination with a ranged from 93% to 98%, they failed to reduce the . The results showed that ten-hour exposure times of microwave frequency for six days significantly facilitated and improved the germination indices (primary shoot and root length). Therefore, the technique is expected to benefit the improvement of rice seed germination considering its simplicity and efficacy in increasing the germination percentage and rate as well as the primary shoot and root length without causing any environmental toxicity. Daryush Talei, Alireza Valdiani, Mahmood Maziah, and Mohammad Mohsenkhah Copyright © 2013 Daryush Talei et al. All rights reserved. Optimizing Available Phosphorus in Calcareous Soils Fertilized with Diammonium Phosphate and Phosphoric Acid Using Freundlich Adsorption Isotherm Wed, 06 Nov 2013 09:18:38 +0000 In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % for 15 days. Freundlich adsorption isotherms () were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L−1) were calculated. It was observed that P adsorption in soil increased with . Moreover, at all the levels of , P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L−1, compared to DAP. However, extrapolating the developed relationship between soil contents and quantity of fertilizer to other similar textured soils needs confirmation. Asif Naeem, Muhammad Akhtar, and Waqar Ahmad Copyright © 2013 Asif Naeem et al. All rights reserved. Antioxidative and Anticholinesterase Activity of Cyphomandra betacea Fruit Sun, 03 Nov 2013 14:04:35 +0000 Cyphomandra betacea is one of the underutilized fruits which can be found in tropical and subtropical countries. This study was conducted to determine the antioxidant activity and phytochemical contents in different parts (i.e., flesh and peel) of the fruits. Antioxidants were analyzed using DPPH and ABTS free radical scavenging assays as well as FRAP assay. Anticholinesterase activity was determined using enzymatic assay using acetyl cholinesterase enzyme. For 80% methanol extract, the peel of the fruit displayed higher antioxidant activity in both FRAP and ABTS free radical scavenging assays while the flesh displayed higher antioxidant activity in the DPPH assay. Total phenolic and total flavonoid content were higher in the peel with the values of 4.89 ± 0.04 mg gallic acid equivalent (GAE)/g and 3.36 ± 0.01 mg rutin equivalent (RU)/g, respectively. Total anthocyanin and carotenoid content were higher in the flesh of the fruit with the values of 4.15 ± 0.04 mg/100 g and 25.13 ± 0.35 mg/100 g. The anticholinesterase was also higher in the peel of C. betacea. The same trends of phytochemicals, antioxidant, and anticholinesterase were also observed in the distilled water extracts. These findings suggested that C. betacea has a potential as natural antioxidant-rich nutraceutical products. Siti Hawa Ali Hassan and Mohd Fadzelly Abu Bakar Copyright © 2013 Siti Hawa Ali Hassan and Mohd Fadzelly Abu Bakar. All rights reserved. Allelopathic Effects of Litter Axonopus compressus against Two Weedy Species and Its Persistence in Soil Wed, 23 Oct 2013 18:36:53 +0000 This study investigated the allelopathic effect of Axonopus compressus litter on Asystasia gangetica and Pennisetum polystachion. In experiment 1 the bioassays with 0, 10, 30, and 50 g L−1 of aqueous A. compressus litter leachate were conducted. Experiment 2 was carried out by incorporating 0, 10, 20, 30, 40, and 50 g L−1 of A. compressus litter leachate into soil. In experiment 3, the fate of A. compressus litter leachate phenolics in the soil was investigated. A. compressus leachates did not affect the germination percentage of A. gangetica and P. polystachion, but delayed germination of A. gangetica seeds and decreased seed germination time of P. polystachion. A. compressus litter leachates affected weeds hypocotyl length. Hypocotyl length reductions of 18 and 31% were observed at the highest concentration (50 g L−1) compared to the control in A. gangetica and P. polystachion, respectively. When concentration of A. compressus litter leachate-amended soil increased A. gangetica and P. polystachion seedling shoot length, root length, seedling weight and chlorophyll concentration were not affected. The 5-week decomposition study of A. compressus showed that the phenolic compounds in A. compressus litter abruptly decreased about 52% after two weeks and remained steady until the end of the incubation. B. Samedani, A. S. Juraimi, M. Y. Rafii, A. R. Anuar, S. A. Sheikh Awadz, and M. P. Anwar Copyright © 2013 B. Samedani et al. All rights reserved. Morphological, Physiological, and Structural Responses of Two Species of Artemisia to NaCl Stress Tue, 22 Oct 2013 14:10:09 +0000 Effects of salt stress on Artemisia scoparia and A. vulgaris “Variegate” were examined. A. scoparia leaves became withered under NaCl treatment, whereas A. vulgaris “Variegate” leaves were not remarkably affected. Chlorophyll content decreased in both species, with a higher reduction in A. scoparia. Contents of proline, MDA, soluble carbohydrate, and Na+ increased in both species under salt stress, but A. vulgaris “Variegate” had higher level of proline and soluble carbohydrate and lower level of MDA and Na+. The ratios of K+/Na+, Ca2+/Na+, and Mg2+/Na+ in A. vulgaris “Variegate” under NaCl stress were higher. Moreover, A. vulgaris “Variegate” had higher transport selectivity of K+/Na+ from root to stem, stem to middle mature leaves, and upper newly developed leaves than A. scoparia under NaCl stress. A. vulgaris “Variegate” chloroplast maintained its morphological integrity under NaCl stress, whereas A. scoparia chloroplast lost integrity. The results indicated that A. scoparia is more sensitive to salt stress than A. vulgaris “Variegate.” Salt tolerance is mainly related to the ability of regulating osmotic pressure through the accumulation of soluble carbohydrates and proline, and the gradient distribution of K+ between roots and leaves was also contributed to osmotic pressure adjustment and improvement of plant salt tolerance. Zhi-Yong Guan, Yi-Ji Su, Nian-Jun Teng, Su-Mei Chen, Hai-Nan Sun, Chu-Ling Li, and Fa-Di Chen Copyright © 2013 Zhi-Yong Guan et al. All rights reserved. Combining Ability for Germination Traits in Jatropha curcas L. Thu, 03 Oct 2013 14:29:21 +0000 Six parents of Jatropha curcas were crossed in half diallel fashion, and the s were evaluated to determine the combining ability for nine germination parameters. The ratio between general combining ability (GCA) and specific combining ability (SCA) variances indicated preponderance of additive gene action for all the characters except germination percentage, time of 50% germination, seedling length, and seedling vigor index. The parents and were the best general combiner for most of the characters studied. The cross was the best specific combiner for speed of emergence, germination percentage, germination energy, germination index, and seedling vigor index, the cross for mean germination time, time of 50% germination, and seedling length, and the cross for number of days to first germination. The germination percentage varied from 58.06 to 92.76% among the parents and 53.43 to 98.96% among the hybrids. The highest germination (98.96%) was observed in hybrid , and none of the hybrids or parents showed 100% germination. The highest germination index (GI) and seedling vigor index (SVI) were found in hybrid and , respectively. The results of this study provide clue for the improvement of Jatropha variety through breeding program. A. K. M. Aminul Islam, Nurina Anuar, Zahira Yaakob, Jaharah A. Ghani, and Mohamad Osman Copyright © 2013 A. K. M. Aminul Islam et al. All rights reserved. Salinity Tolerance Turfgrass: History and Prospects Thu, 03 Oct 2013 09:02:34 +0000 Land and water resources are becoming scarce and are insufficient to sustain the burgeoning population. Salinity is one of the most important abiotic stresses affecting agricultural productions across the world. Cultivation of salt-tolerant turfgrass species may be promising option under such conditions where poor quality water can also be used for these crops. Coastal lands in developing countries can be used to grow such crops, and seawater can be used for irrigation of purposes. These plants can be grown using land and water unsuitable for conventional crops and can provide food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products and can be used for landscape reintegration. There are a number of potential turfgrass species that may be appropriate at various salinity levels of seawater. The goal of this review is to create greater awareness of salt-tolerant turfgrasses, their current and potential uses, and their potential use in developing countries. The future for irrigating turf may rely on the use of moderate- to high-salinity water and, in order to ensure that the turf system is sustainable, will rely on the use of salt-tolerant grasses and an improved knowledge of the effects of salinity on turfgrasses. Md. Kamal Uddin and Abdul Shukor Juraimi Copyright © 2013 Md. Kamal Uddin and Abdul Shukor Juraimi. All rights reserved. Integration of Agronomic Practices with Herbicides for Sustainable Weed Management in Aerobic Rice Wed, 02 Oct 2013 09:43:23 +0000 Till now, herbicide seems to be a cost effective tool from an agronomic view point to control weeds. But long term efficacy and sustainability issues are the driving forces behind the reconsideration of herbicide dependent weed management strategy in rice. This demands reappearance of physical and cultural management options combined with judicious herbicide application in a more comprehensive and integrated way. Keeping those in mind, some agronomic tools along with different manual weeding and herbicides combinations were evaluated for their weed control efficacy in rice under aerobic soil conditions. Combination of competitive variety, higher seeding rate, and seed priming resulted in more competitive cropping system in favor of rice, which was reflected in lower weed pressure, higher weed control efficiency, and better yield. Most of the herbicides exhibited excellent weed control efficiency. Treatments comprising only herbicides required less cost involvement but produced higher net benefit. On the contrary, treatments comprising both herbicide and manual weeding required high cost involvement and thus produced lower net benefit. Therefore, adoption of competitive rice variety, higher seed rate, and seed priming along with spraying different early-postemergence herbicides in rotation at 10 days after seeding (DAS) followed by a manual weeding at 30 DAS may be recommended from sustainability view point. M. P. Anwar, A. S. Juraimi, M. T. M. Mohamed, M. K. Uddin, B. Samedani, A. Puteh, and Azmi Man Copyright © 2013 M. P. Anwar et al. All rights reserved. Effect of Forest Structural Change on Carbon Storage in a Coastal Metasequoia glyptostroboides Stand Wed, 25 Sep 2013 14:23:21 +0000 Forest structural change affects the forest’s growth and the carbon storage. Two treatments, thinning (30% thinning intensity) and underplanting plus thinning, are being implemented in a coastal Metasequoia glyptostroboides forest shelterbelt in Eastern China. The vegetation carbon storage significantly increased in the underplanted and thinned treatments compared with that in the unthinned treatment (). The soil and litterfall carbon storage in the underplanted treatment were significantly higher than those in the unthinned treatment (). The total forest ecosystem carbon storage in the underplanted and thinned treatments increased by 35.3% and 26.3%, respectively, compared with that in the unthinned treatment, an increase that mainly came from the growth of vegetation aboveground. Total ecosystem carbon storage showed no significant difference between the underplanted and thinned treatments (). The soil light fraction organic carbon (LFOC) was significantly higher at the 0–15 cm soil layer in the thinned and underplanted stands compared with that in the unthinned stand (). The soil respiration of the underplanted treatment was significantly higher than that of the unthinned treatment only in July (). This study concludes that 30% thinning and underplanting after thinning could be more favorable to carbon sequestration for M. glyptostroboides plantations in the coastal areas of Eastern China. Xiangrong Cheng, Mukui Yu, and Tonggui Wu Copyright © 2013 Xiangrong Cheng et al. All rights reserved. Competitive Interaction of Axonopus compressus and Asystasia gangetica under Contrasting Sunlight Intensity Wed, 18 Sep 2013 08:39:10 +0000 Axonopus compressus is one of the native soft grass species in oil palm in Malaysia which can be used as a cover crop. The competitive ability of A. compressus to overcome A. gangetica was studied using multiple-density, multiple-proportion replacements series under a glasshouse and full sunlight conditions in a poly bag for 10 weeks. A. compressus produced more dry weight and leaf area when competing against A. gangetica than in monoculture at both densities in the full sunlight and at high density in the shade. Moreover, the relative yield and relative crowding coefficients also indicated A. compressus is a stronger competitor than A. gangetica at both densities in the full sunlight and high density in the shade. It seemed that A. gangetica plants in the shade did not compete with each other and were more competitive against A. compressus as could influence A. compressus height in the shade. It is concluded that although suppression of A. gangetica by A. compressus occurred under full sunlight, irrespective of plant density, this ability reduced under shade as A. compressus density decreased. The result suggests that A. compressus in high density could be considered as a candidate for cover crops under oil palm canopy. B. Samedani, A. S. Juraimi, M. P. Anwar, M. Y. Rafii, S. H. Sheikh Awadz, and A. R. Anuar Copyright © 2013 B. Samedani et al. All rights reserved. Influence of Plant Population and Nitrogen-Fertilizer at Various Levels on Growth and Growth Efficiency of Maize Sun, 15 Sep 2013 14:05:18 +0000 Field experiments were conducted to evaluate plant population and N-fertilizer effects on yield and yield components of maize (Zea mays L.). Three levels of plant populations (53000, 66000, and 800000 plants ha−1 corresponding to spacings of 75 × 25, 60 × 25, and 50 × 25 cm) and 4 doses of N (100, 140, 180, and 220 kg ha−1) were the treatment variables. Results revealed that plant growth, light interception (LI), yield attributes, and grain yield varied significantly due to the variations in population density and N-rates. Crop growth rate (CGR) was the highest with the population of 80,000 ha−1 receiving 220 kg N ha−1, while relative growth rate (RGR) showed an opposite trend of CGR. Light absorption was maximum when most of densely populated plant received the highest amount of N (220 kg N ha−1). Response of soil-plant-analysis development (SPAD) value as well as N-content to N-rates was found significant. Plant height was the maximum at the lowest plant density with the highest amount of N. Plants that received 180 kg N ha−1 with 80,000 plants ha−1 had larger foliage, greater SPAD value, and higher amount of grains cob−1 that contributed to the maximum yield (5.03 t ha−1) and the maximum harvest index (HI) compared to the plants in other treatments. M. I. Tajul, M. M. Alam, S. M. M. Hossain, K. Naher, M. Y. Rafii, and M. A. Latif Copyright © 2013 M. I. Tajul et al. All rights reserved. Spent Mushroom Waste as a Media Replacement for Peat Moss in Kai-Lan (Brassica oleracea var. Alboglabra) Production Mon, 09 Sep 2013 18:18:30 +0000 Peat moss (PM) is the most widely used growing substrate for the pot culture. Due to diminishing availability and increasing price of PM, researchers are looking for viable alternatives for peat as a growth media component for potted plants. A pot study was conducted with a view to investigate the possibility of using spent mushroom waste (SMW) for Kai-lan (Brassica oleracea var. Alboglabra) production replacing peat moss (PM) in growth media. The treatments evaluated were 100% PM (control), 100% SMW, and mixtures of SMW and PM in different ratios like 1 : 1, 1 : 2, and 2 : 1 (v/v) with/without NPK amendment. The experiment was arranged in a completely randomized design with five replications per treatment. Chemical properties like pH and salinity level (EC) of SMW were within the acceptable range of crop production but, nutrient content, especially nitrogen content was not enough to provide sufficient nutrition to plant for normal growth. Only PM (100%) and SMW and PM mixture in 1 : 1 ratio with NPK amendment performed equally in terms of Kai-lan growth. This study confirms the feasibility of replacing PM by SMW up to a maximum of 50% in the growth media and suggests that NPK supplementation from inorganic sources is to ensure a higher productivity of Kai-lan. H. Sendi, M. T. M. Mohamed, M. P. Anwar, and H. M. Saud Copyright © 2013 H. Sendi et al. All rights reserved. The Chamber for Studying Rice Response to Elevated Nighttime Temperature in Field Thu, 05 Sep 2013 11:47:45 +0000 An in situ temperature-controlled field chamber was developed for studying a large population of rice plant under different nighttime temperature treatments while maintaining conditions similar to those in the field during daytime. The system consists of a pipe hoop shed-type chamber with manually removable covers manipulated to provide a natural environment at daytime and a relatively stable and accurate temperature at night. Average air temperatures of 22.4 ± 0.3°C at setting of 22°C, 27.6 ± 0.4°C at 27°C, and 23.8 ± 0.7°C ambient conditions were maintained with the system. No significant horizontal and vertical differences in temperature were found and only slight changes in water temperatures were observed between the chambers and ambient conditions at 36 days after transplanting. A slight variation in CO2 concentration was observed at the end of the treatment during the day, but the 10-μmol CO2 mol−1 difference was too small to alter plant response. The present utilitarian system, which only utilizes an air conditioner/heater, is suitable for studying the effect of nighttime temperature on plant physiological responses with minimal perturbation of other environmental factors. At the same time, it will enable in situ screening of many rice genotypes. Song Chen, Xi Zheng, Dangying Wang, Chunmei Xu, Ma. Rebecca C. Laza, and Xiufu Zhang Copyright © 2013 Song Chen et al. All rights reserved. Variation of Photosynthesis, Fatty Acid Composition, ATPase and Acid Phosphatase Activities, and Anatomical Structure of Two Tea (Camellia sinensis (L.) O. Kuntze) Cultivars in Response to Fluoride Mon, 19 Aug 2013 11:36:29 +0000 The changes of photosynthetic parameters, water use efficiency (WUE), fatty acid composition, chlorophyll (Chl) content, malondialdehyde (MDA) content, ATPase and acid phosphatase activities, fluoride (F) content, and leaf anatomical structure of two tea cultivars, “Pingyangtezao” (PY) and “Fudingdabai” (FD), after F treatments were investigated. The results show that net photosynthetic rate (), stomatal conductance (), and transpiration rate (E) significantly decreased in both cultivars after 0.3 mM F treatment, but FD had higher , , and WUE and lower E than PY. Chl content in PY significantly decreased after 0.2 and 0.3 mM F treatments, while no significant changes were observed in FD. The proportions of shorter chain and saturated fatty acids increased and those of longer chain and unsaturated fatty acids decreased in both cultivars under F treatments. The contents of MDA increased after F treatments but were higher in PY than in FD. In addition, F treatments decreased the activities of ATPase and acid phosphatase and increased F content in both cultivars; however, compared with PY, FD showed higher enzymatic activities and lower F content in roots and leaves. Leaf anatomical structure in FD indicated that cells in leaf midrib region were less injured by F than in PY. L. X. Wang, J. H. Tang, B. Xiao, Y. J. Yang, and J. Liu Copyright © 2013 L. X. Wang et al. All rights reserved. Proximate Analysis of Five Wild Fruits of Mozambique Thu, 25 Jul 2013 08:36:28 +0000 Mozambique is rich in wild fruit trees, most of which produce fleshy fruits commonly consumed in rural communities, especially during dry seasons. However, information on their content of macronutrients is scarce. Five wild fruit species (Adansonia digitata, Landolphia kirkii, Sclerocarya birrea, Salacia kraussii, and Vangueria infausta) from different districts in Mozambique were selected for the study. The contents of dry matter, fat, protein, ash, sugars, pH, and titratable acidity were determined in the fruit pulps. Also kernels of A. digitata and S. birrea were included in the study. The protein content in the pulp was below 5 g/100 g of dry matter, but a daily intake of 100 g fresh wild fruits would provide up to 11% of the recommended daily intake for children from 4 to 8 years old. The sugar content varied between 2.3% and 14.4% fresh weight. The pH was below 3, except for Salacia kraussii, for which it was slightly below 7. Kernels of A. digitata contained, on average, 39.2% protein and 38.0% fat, and S. birrea kernels 32.6% protein and 60.7% fat. The collection of nutritional information may serve as a basis for increased consumption and utilization. Telma Magaia, Amália Uamusse, Ingegerd Sjöholm, and Kerstin Skog Copyright © 2013 Telma Magaia et al. All rights reserved. Nitrogen and Potassium Concentrations in the Nutrients Solution for Melon Plants Growing in Coconut Fiber without Drainage Sun, 23 Jun 2013 10:01:02 +0000 With the objective of evaluating the effects of N and K concentrations for melon plants, an experiment was carried out from July 1, 2011 to January 3, 2012 in Muzambinho city, Minas Gerais State, Brazil. The “Bonus no. 2” was cultivated at the spacing of 1.1 × 0.4. The experimental design was a randomized complete block with three replications in a 4 × 4 factorial scheme with four N concentrations (8, 12, 16, and 20 mmol L−1) and four K concentrations (4, 6, 8, and 10 mmol L−1). The experimental plot constituted of eight plants. It was observed that the leaf levels of N and K, of N-NO3 and of K, and the electrical conductivity (CE) of the substrate increased with the increment of N and K in the nutrients' solution. Substratum pH, in general, was reduced with increments in N concentration and increased with increasing K concentrations in the nutrients' solution. Leaf area increased with increments in N concentration in the nutrients solution. Fertigation with solutions stronger in N (20 mmol L−1) and K (10 mmol L−1) resulted in higher masses for the first (968 g) and the second (951 g) fruits and crop yield (4,425 gm−2). Luiz Augusto Gratieri, Arthur Bernardes Cecílio Filho, José Carlos Barbosa, and Luiz Carlos Pavani Copyright © 2013 Luiz Augusto Gratieri et al. All rights reserved. Effect of Glu-B3 Allelic Variation on Sodium Dodecyl Sulfate Sedimentation Volume in Common Wheat (Triticum aestivum L.) Tue, 18 Jun 2013 14:29:15 +0000 Sodium dodecyl sulfate (SDS) sedimentation volume has long been used to characterize wheat flours and meals with the aim of predicting processing and end-product qualities. In order to survey the influence of low-molecular-weight glutenin subunits (LMW-GSs) at Glu-B3 locus on wheat SDS sedimentation volume, a total of 283 wheat (Triticum aestivum L.) varieties including landraces and improved and introduced cultivars were analyzed using 10 allele-specific PCR markers at the Glu-B3 locus. The highest allele frequency observed in the tested varieties was Glu-B3i with 21.9% in all varieties, 21.1% in landraces, 25.5% in improved cultivars, and 12% in introduced cultivars. Glu-B3 locus represented 8.6% of the variance in wheat SDS sedimentation volume, and Glu-B3b, Glu-B3g, and Glu-B3h significantly heightened the SDS sedimentation volume, but Glu-B3a, Glu-B3c, and Glu-B3j significantly lowered the SDS sedimentation volume. For the bread-making quality, the most desirable alleles Glu-B3b and Glu-B3g become more and more popular and the least desirable alleles Glu-B3a and Glu-B3c got less and less in modern improved cultivars, suggesting that wheat grain quality in China has been significantly improved through breeding effort. Hongqi Si, Manli Zhao, Fuxia He, and Chuanxi Ma Copyright © 2013 Hongqi Si et al. All rights reserved. Establishing an Efficient Way to Utilize the Drought Resistance Germplasm Population in Wheat Tue, 07 May 2013 18:46:44 +0000 Drought resistance breeding provides a hopeful way to improve yield and quality of wheat in arid and semiarid regions. Constructing core collection is an efficient way to evaluate and utilize drought-resistant germplasm resources in wheat. In the present research, 1,683 wheat varieties were divided into five germplasm groups (high resistant, HR; resistant, R; moderate resistant, MR; susceptible, S; and high susceptible, HS). The least distance stepwise sampling (LDSS) method was adopted to select core accessions. Six commonly used genetic distances (Euclidean distance, Euclid; Standardized Euclidean distance, Seuclid; Mahalanobis distance, Mahal; Manhattan distance, Manhat; Cosine distance, Cosine; and Correlation distance, Correlation) were used to assess genetic distances among accessions. Unweighted pair-group average (UPGMA) method was used to perform hierarchical cluster analysis. Coincidence rate of range (CR) and variable rate of coefficient of variation (VR) were adopted to evaluate the representativeness of the core collection. A method for selecting the ideal constructing strategy was suggested in the present research. A wheat core collection for the drought resistance breeding programs was constructed by the strategy selected in the present research. The principal component analysis showed that the genetic diversity was well preserved in that core collection. Jiancheng Wang, Yajing Guan, Yang Wang, Liwei Zhu, Qitian Wang, Qijuan Hu, and Jin Hu Copyright © 2013 Jiancheng Wang et al. All rights reserved. Storage Insects on Yam Chips and Their Traditional Management in Northern Benin Thu, 04 Apr 2013 15:35:42 +0000 Twenty-five villages of Northern Benin were surveyed to identify the constraints of yam chips production, assess the diversity of storage insects on yam chips, and document farmers' perception of their impacts on the stocks and their traditional management practices. Damages due to storage insects (63.9% of responses) and insufficiency of insect-resistant varieties (16.7% of responses) were the major constraints of yam chips production. Twelve insect pest species were identified among which Dinoderus porcellus Lesne (Coleoptera, Bostrichidae) was by far the most important and the most distributed (97.44% of the samples). Three predators (Teretrius nigrescens Lewis, Xylocoris flavipes Reuter, and Alloeocranum biannulipes Montrouzier & Signoret) and one parasitoid (Dinarmus basalis Rondani) all Coleoptera, Bostrichidae were also identified. The most important traditional practices used to control or prevent insect attack in yam chips were documented and the producers' preference criteria for yam cultivars used to produce chips were identified and prioritized. To further promote the production of yam chips, diversification of insect-resistant yam varieties, conception, and use of health-protective natural insecticides and popularization of modern storage structures were proposed. Y. L. Loko, A. Dansi, M. Tamo, A. H. Bokonon-Ganta, P. Assogba, M. Dansi, R. Vodouhè, A. Akoegninou, and A. Sanni Copyright © 2013 Y. L. Loko et al. All rights reserved. UV-B Radiation Impacts Shoot Tissue Pigment Composition in Allium fistulosum L. Cultigens Sun, 31 Mar 2013 08:47:21 +0000 Plants from the Allium genus are valued worldwide for culinary flavor and medicinal attributes. In this study, 16 cultigens of bunching onion (Allium fistulosum L.) were grown in a glasshouse under filtered UV radiation (control) or supplemental UV-B radiation [7.0 μmol·m−2·s−2 (2.68 W·m−2)] to determine impacts on growth, physiological parameters, and nutritional quality. Supplemental UV-B radiation influenced shoot tissue carotenoid concentrations in some, but not all, of the bunching onions. Xanthophyll carotenoid pigments lutein and β-carotene and chlorophylls a and b in shoot tissues differed between UV-B radiation treatments and among cultigens. Cultigen “Pesoenyj” responded to supplemental UV-B radiation with increases in the ratio of zeaxanthin + antheraxanthin to zeaxanthin + antheraxanthin + violaxanthin, which may indicate a flux in the xanthophyll carotenoids towards deepoxydation, commonly found under high irradiance stress. Increases in carotenoid concentrations would be expected to increase crop nutritional values. Kristin R. Abney, Dean A. Kopsell, Carl E. Sams, Svetlana Zivanovic, and David E. Kopsell Copyright © 2013 Kristin R. Abney et al. All rights reserved. Water Use Efficiency and Physiological Response of Rice Cultivars under Alternate Wetting and Drying Conditions Tue, 18 Dec 2012 18:14:55 +0000 One of the technology options that can help farmers cope with water scarcity at the field level is alternate wetting and drying (AWD). Limited information is available on the varietal responses to nitrogen, AWD, and their interactions. Field experiments were conducted at the International Rice Research Institute (IRRI) farm in 2009 dry season (DS), 2009 wet season (WS), and 2010 DS to determine genotypic responses and water use efficiency of rice under two N rates and two water management treatments. Grain yield was not significantly different between AWD and continuous flooding (CF) across the three seasons. Interactive effects among variety, water management, and N rate were not significant. The high yield was attributed to the significantly higher grain weight, which in turn was due to slower grain filling and high leaf N at the later stage of grain filling of CF. AWD treatments accelerated the grain filling rate, shortened grain filling period, and enhanced whole plant senescence. Under normal dry-season conditions, such as 2010 DS, AWD reduced water input by 24.5% than CF; however, it decreased grain yield by 6.9% due to accelerated leaf senescence. The study indicates that proper water management greatly contributes to grain yield in the late stage of grain filling, and it is critical for safe AWD technology. Yunbo Zhang, Qiyuan Tang, Shaobing Peng, Danying Xing, Jianquan Qin, Rebecca C. Laza, and Bermenito R. Punzalan Copyright © 2012 Yunbo Zhang et al. All rights reserved. The Interdependence between Rainfall and Temperature: Copula Analyses Tue, 13 Nov 2012 14:36:11 +0000 Rainfall and temperature are important climatic inputs for agricultural production, especially in the context of climate change. However, accurate analysis and simulation of the joint distribution of rainfall and temperature are difficult due to possible interdependence between them. As one possible approach to this problem, five families of copula models are employed to model the interdependence between rainfall and temperature. Scania is a leading agricultural province in Sweden and is affected by a maritime climate. Historical climatic data for Scania is used to demonstrate the modeling process. Heteroscedasticity and autocorrelation of sample data are also considered to eliminate the possibility of observation error. The results indicate that for Scania there are negative correlations between rainfall and temperature for the months from April to July and September. The student copula is found to be most suitable to model the bivariate distribution of rainfall and temperature based on the Akaike information criterion (AIC) and Bayesian information criterion (BIC). Using the student copula, we simulate temperature and rainfall simultaneously. The resulting models can be integrated with research on agricultural production and planning to study the effects of changing climate on crop yields. Rong-Gang Cong and Mark Brady Copyright © 2012 Rong-Gang Cong and Mark Brady. All rights reserved. Ethylene Inhibitors Enhance Shoot Organogenesis of Gloxinia (Sinningia speciosa) Wed, 17 Oct 2012 15:12:39 +0000 Shoot organogenesis and plant regeneration in Sinningia speciosa were improved using ethylene inhibitors. The leaf explants were cultured on initial shoot regeneration media (MS media with BAP at 2 mg/L + NAA at 0.1 mg/L) supplemented with different concentrations of aminoethoxyvinylglycine (AVG), cobalt chloride (CoCl2), and silver thiosulphate (STS). The addition of AVG, CoCl2, and STS significantly improved the regeneration frequency giving higher shoots per explant and longer shoot length. The highest shoot growth was found when STS at 5 mg/L was incorporated with generation medium, performing highest regeneration frequency with highest number of shoots. This treatment (STS at 5 mg/L) produced 40% more shoots per explant compared to control followed by STS at 10 mg/L with increasing 37% more shoots compared to control. In the cases of AVG and CoCl2 the highest shoot number per explant was found at 1 mg/L. Treated with AVG and CoCl2 at 1 mg/L increased shoot number by 16 and 12%, respectively, compared to control. Ethylene inhibitors could be used as a possible micropropagation and plant transformation protocol in S. speciosa for plant regenerations. Soo Cheon Chae, Haeng Hoon Kim, and Sang Un Park Copyright © 2012 Soo Cheon Chae et al. All rights reserved. Host Suitability of House Fly, Musca domestica (Diptera: Muscidae), Pupae Killed by High or Low Temperature Treatment for a Parastoid, Spalangia endius (Hymenoptera: Pteromalidae) Tue, 25 Sep 2012 11:24:21 +0000 The objective of this study was to establish a high quality progeny production system for the house fly parasitoid, Spalangia endius (Hymenoptera: Pteromalidae), by stockpiling hosts. We performed two host killing methods before host storage: (i) heat-killed by 30 min exposure to 50°C or (ii) freeze-killed by 10 min exposure to −80°C. The average number of parasitoids that emerged from nonstored house fly pupae after heat- or freeze-killing was not significantly different from live pupae. When house fly pupae stored at −20°C after heat-killing were supplied to S. endius, progeny production was significantly less than live pupae. Moreover, productivity became very low when house fly pupae refrigerated at 3°C after heat- or freeze-killing were supplied to S. endius. On the other hand, when house fly pupae stored at −80°C for 1 year after heat-killing were supplied to S. endius, the average number of parasitoids that emerged was not significantly different from live pupae. The average number of parasitoids that emerged from freeze-killed hosts kept for more than 8 weeks at −80°C was significantly fewer than live pupae. Thus, this study clarified that a higher-quality host can be maintained not only by simply storing at –80°C but also by adding heat treatment before storage. Kohei Ogawa, Katsura Ito, Tatsuya Fukuda, Shin-ichi Tebayashi, and Ryo Arakawa Copyright © 2012 Kohei Ogawa et al. All rights reserved. Diversity of Macro- and Micronutrients in the Seeds of Lentil Landraces Mon, 10 Sep 2012 14:14:43 +0000 Increasing the amount of bioavailable mineral elements in plant foods would help to improve the nutritional status of populations in developing countries. Legume seeds have the potential to provide many essential nutrients. It is important to have information on genetic variations among different lentil populations so that plant breeding programs can use new varieties in cross-breeding programs. The main objective of this study was to characterize the micro- and macronutrient concentrations of lentil landraces seeds collected from South-Eastern Turkey. We found impressive variation in the micro- and macroelement concentrations in 39 lentil landraces and 7 cultivars. We investigated the relationships of traits by correlation analysis and principal component analysis (PCA). The concentrations of several minerals, particularly Zn, were positively correlated with other minerals, suggesting that similar pathways or transporters control the uptake and transport of these minerals. Some genotypes had high mineral and protein content and potential to improve the nutritional value of cultivated lentil. Cross-breeding of numerous lentil landraces from Turkey with currently cultivated varieties could improve the levels of micro- and macronutrients of lentil and may contribute to the worldwide lentil quality breeding program. Tolga Karaköy, Halil Erdem, Faheem S. Baloch, Faruk Toklu, Selim Eker, Benjamin Kilian, and Hakan Özkan Copyright © 2012 Tolga Karaköy et al. All rights reserved. Impact of the Spittlebug Mahanarva spectabilis on Signal Grass Mon, 13 Aug 2012 08:52:59 +0000 The aim of this study was to determine the damage in Brachiaria ruziziensis (Germain & Edvard) according to the density of and exposure time to adults of Mahanarva spectabilis (Distant, 1909) (Hemiptera:Cercopidae). Each plant was kept with 0, 12, 18, or 24 adults of M. spectabilis for five or ten days. Then, the insects were removed from the plant, and the following parameters were evaluated: content and loss of chlorophyll, visual damage score, shoot dry mass, and the capability for regrowth. In fact, plants exposed to the highest level of infestation for 10 days showed an 80.97% loss of chlorophyll, which is 25% higher than that shown by the plants exposed for five days. The damage score also increased with infestation levels. In the levels of 12 and 18 adults per plant, the damage score increased with increasing time of exposure. The dry mass content was higher in plants exposed to 24 insects for 10 days, suggesting that the attack of spittlebugs caused premature drying of the plant. These effects caused significant reduction in the number of tillers of infested plants. Our results indicate that exposure to adults of M. spectabilis causes significant damage and affects the development and persistence of B. ruziziensis plants. Tiago Teixeira Resende, Alexander Machado Auad, Marcy das Graças Fonseca, Thiago Henrique dos Santos, and Tamiris Moreira Vieira Copyright © 2012 Tiago Teixeira Resende et al. All rights reserved. Olive Fertility as Affected by Cross-Pollination and Boron Tue, 31 Jul 2012 14:04:47 +0000 Self-compatibility of local olive (Olea europaea L.) accessions and of the cultivars “Frantoio” and “Leccino” was investigated in Garda Lake area, northern Italy. Intercompatibility was determined for “Casaliva,” “Frantoio,” and “Leccino,” as well as the effects of foliar Boron applications (0, 262, 525, or 1050 mg·L−1) applied about one week before anthesis on fruit set, shotberry set, and on in vitro pollen germination. Following self-pollination, fruit set was significantly lower and the occurrence of shot berries significantly higher than those obtained by open pollination. No significant effect of controlled cross-pollination over self-pollination on fruit set and shotberry set was detectable. B treatments increased significantly fruit set in “Frantoio” and “Casaliva” but not in “Leccino.” B sprays had no effect on shotberry set, suggesting that these parthenocarpic fruits did not strongly compete for resources allocation and did not take advantage of increased B tissue levels. Foliar B application enhanced in vitro pollen germination, and the optimal level was higher for pollen germination than for fruit set. Our results highlight the importance of olive cross pollination for obtaining satisfactory fruit set and the beneficial effect of B treatments immediately prior to anthesis, possibly by affecting positively the fertilisation process and subsequent plant source-sink relations linked to fruitlet retention. A. Spinardi and D. Bassi Copyright © 2012 A. Spinardi and D. Bassi. All rights reserved. Differential Responses of Two Broccoli (Brassica oleracea L. var Italica) Cultivars to Salinity and Nutritional Quality Improvement Tue, 31 Jul 2012 10:29:40 +0000 The comparative responses of two broccoli cultivars (Brassica oleracea var. Italica, cv. Parthenon and cv. Naxos) to a 15 d exposure to different NaCl levels were investigated. Salinity led to increased concentrations of Na+ and Cl− ions in both cultivars, a disruption of the endogenous minerals levels in the shoots and roots—that varied with the cultivar and salt concentration—and decreases in the osmotic potential (Ψ𝜋), root hydraulic conductance (L0), and stomatal conductance (𝐺𝑠). The reduced biomass of Naxos at moderate NaCl indicates greater sensitivity to salinity, compared with Parthenon. Parthenon accumulated more soluble sugars, for osmotic adjustment, whereas Naxos accumulated proline, which gave the two cultivars differing nutritional characteristics. The total glucosinolates (GSLs) content was not affected by salinity in Parthenon while it decreased significantly in Naxos as a consequence of the decrease in the indole GSL. However, Naxos accumulated more aliphatic GSLs under salt stress than Parthenon, which confers on this cultivar a greater nutritional value when cultivated under salinity.These results suggest that, at distinct salinity levels, each broccoli cultivar adopts a specific strategy, indicating the crucial role of the genetic background on the organoleptic and nutritional properties that each cultivar acquires. Chokri Zaghdoud, Carlos Alcaraz-López, César Mota-Cadenas, María del Carmen Martínez-Ballesta, Diego A. Moreno, Ali Ferchichi, and Micaela Carvajal Copyright © 2012 Chokri Zaghdoud et al. All rights reserved. Critical Period of Weed Control in Aerobic Rice Mon, 18 Jun 2012 10:23:29 +0000 Critical period of weed control is the foundation of integrated weed management and, hence, can be considered the first step to design weed control strategy. To determine critical period of weed control of aerobic rice, field trials were conducted during 2010/2011 at Universiti Putra Malaysia. A quantitative series of treatments comprising two components, (a) increasing duration of weed interference and (b) increasing length of weed-free period, were imposed. Critical period was determined through Logistic and Gompertz equations. Critical period varied between seasons; in main season, it started earlier and lasted longer, as compared to off-season. The onset of the critical period was found relatively stable between seasons, while the end was more variable. Critical period was determined as 7–49 days after seeding in off-season and 7–53 days in main season to achieve 95% of weed-free yield, and 23–40 days in off-season and 21–43 days in main season to achieve 90% of weed-free yield. Since 5% yield loss level is not practical from economic view point, a 10% yield loss may be considered excellent from economic view point. Therefore, aerobic rice should be kept weed-free during 21–43 days for better yield and higher economic return. M. P. Anwar, A. S. Juraimi, B. Samedani, A. Puteh, and A. Man Copyright © 2012 M. P. Anwar et al. All rights reserved. Durum Wheat in Conventional and Organic Farming: Yield Amount and Pasta Quality in Southern Italy Mon, 04 Jun 2012 16:03:51 +0000 Five durum wheat cultivars were grown in a Mediterranean area (Southern Italy) under conventional and organic farming with the aim to evaluate agronomic, technological, sensory, and sanitary quality of grains and pasta. The cultivar Matt produced the best pasta quality under conventional cropping system, while the quality parameters evaluated were unsatisfactory under organic farming. The cultivar Saragolla showed the best yield amount and pasta quality in all the experimental conditions, thus proving to be the cultivar more adapt to organic farming. In all the tested experimental conditions, nivalenol (NIV) and deoxynivalenol (DON) occurrence was very low and the other mycotoxins evaluated were completely absent. These data confirm the low risk of mycotoxin contamination in the Mediterranean climate conditions. Finally, it has been possible to produce high-quality pasta in Southern Italy from durum wheat grown both in conventional and organic farming. Massimo Fagnano, Nunzio Fiorentino, Maria Grazia D'Egidio, Fabrizio Quaranta, Alberto Ritieni, Rosalia Ferracane, and Giampaolo Raimondi Copyright © 2012 Massimo Fagnano et al. All rights reserved. Physiochemical and Phytochemical Properties of Wax Apple (Syzygium samarangense [Blume] Merrill & L. M. Perry var. Jambu Madu) as Affected by Growth Regulator Application Mon, 04 Jun 2012 15:51:59 +0000 This study represents the first paper of the effects of growth regulators on the physiochemical and phytochemical properties of the wax apple fruit, a widely cultivated fruit tree in southeast Asia. Net photosynthesis, sucrose phosphate synthase (SPS) activity, peel color, fruit firmness, juice content, pH value, total soluble solids (TSSs), and the sugar acid ratio were all significantly increased in growth regulators (PGRs) treated fruits. The application of gibberellin (GA3), naphthalene acetic acid (NAA), and 2,4-dichlorophenoxy acetic acid (2,4-D) significantly reduced titratable acidity and increased total sugar and carbohydrate content compared to the control. The 50 mg/L GA3, 10 mg/L NAA, and 5 mg/L 2,4-D treatments produced the greatest increases in phenol and flavonoid content; vitamin C content was also higher for these treatments. PGR treatment significantly affected chlorophyll, anthocyanin, and carotene content and produced higher phenylalanine ammonia lyase (PAL) and antioxidant activity levels. There was a positive correlation between peel color and TSS and antioxidant activity and both phenol and flavonoid content and PAL activity and anthocyanin formation. A taste panel assessment was also performed, and the highest scores were given to fruits that had been treated with GA3 or auxin. The study showed that application of 50 mg/L GA3, 10 mg/L NAA, and 5 mg/L 2,4-D once a week from bud development to fruit maturation increased the physiochemical and phytochemical properties of wax apple fruits. Mohammad Moneruzzaman Khandaker, Amru Nasrulhaq Boyce, Normaniza Osman, and ABM Sharif Hossain Copyright © 2012 Mohammad Moneruzzaman Khandaker et al. All rights reserved. Synthetic Brassica napus L.: Development and Studies on Morphological Characters, Yield Attributes, and Yield Mon, 04 Jun 2012 15:12:09 +0000 Brassica napus was synthesized by hybridization between its diploid progenitor species B. rapa and B. oleracea followed by chromosome doubling. Cross with B. rapa as a female parent was only successful. Among three colchicine treatments (0.10, 0.15, and 0.20%), 0.15% gave the highest success (86%) of chromosome doubling in the hybrids (AC; 2𝑛=19). Synthetic B. napus (AACC, 2𝑛=38) was identified with bigger petals, fertile pollens and seed setting. Synthetic B. napus had increased growth over parents and exhibited wider ranges with higher coefficients of variations than parents for morphological and yield contributing characters, and yield per plant. Siliqua length as well as beak length in synthetic B. napus was longer than those of the parents. Number of seeds per siliqua, 1000-seed weight and seed yield per plant in synthetic B. napus were higher than those of the parents. Although flowering time in synthetic B. napus was earlier than both parents, however the days to maturity was little higher over early maturing B. rapa parent. The synthesized B. napus has great potential to produce higher seed yield. Further screening and evaluation is needed for selection of desirable genotypes having improved yield contributing characters and higher seed yield. M. A. Malek, M. R. Ismail, M. Y. Rafii, and M. Rahman Copyright © 2012 M. A. Malek et al. All rights reserved. Genetic Performance and General Combining Ability of Oil Palm Deli dura x AVROS pisifera Tested on Inland Soils Tue, 22 May 2012 15:46:31 +0000 The performance of 11 oil palm AVROS (Algemene Vereniging van Rubberplanters ter Oostkust van Sumatra) pisiferas was evaluated based on their 40 dura x pisifera (DxP) progenies tested on inland soils, predominantly of Serdang Series. Fresh fruit bunch (FFB) yield of each pisiferas ranged from 121.93 to 143.9 kg palm−1 yr−1 with trial mean of 131.62 kg palm−1 yr−1. Analysis of variance (ANOVA) showed low genetic variability among pisifera parents for most of the characters indicating uniformity of the pisifera population. This was anticipated as the AVROS pisiferas were derived from small population and were inbred materials. However, some of the pisiferas have shown good general combining ability (GCA) for certain important economic traits. Three pisiferas (P1 (0.174/247), P3 (0.174/498), P11 (0.182/308)) were identified of having good GCA for FFB yield while pisiferas P1 (0.174/247), P10 (0.182/348), and P11 (0.182/308) were good combiners for oil-to-bunch ratio (O/B). The narrow genetic base of these materials was the main obstacle in breeding and population improvement. However, efforts have been made to introgress this material with the vast oil palm germplasm collections of MPOB for rectifying the problem. A. Noh, M. Y. Rafii, G. Saleh, A. Kushairi, and M. A. Latif Copyright © 2012 A. Noh et al. All rights reserved. Use of Fertigation and Municipal Solid Waste Compost for Greenhouse Pepper Cultivation Thu, 03 May 2012 09:08:00 +0000 Municipal solid waste compost (MSWC) and/or fertigation used in greenhouse pepper (Capsicum annuum L.) cultivation with five different substrates with soil (S) and/or MSWC mixtures (0–5–10–20–40%) used with or without fertigation. Plants growth increased in 10–20% MSWC and fertigation enhanced mainly the plant height. Fruit number increased in S : MSWC 80 : 20 without fertilizer. Plant biomass increased as MSWC content increased. There were no differences regarding leaf fluoresces and plant yield. The addition of MSWC increased nutritive value (N, K, P, organic matter) of the substrate resulting in increased EC. Fruit fresh weight decreased (up to 31%) as plants grown in higher MSWC content. Fruit size fluctuated when different MSWC content used into the soil and the effects were mainly in fruit diameter rather than in fruit length. Interestingly, the scale of marketable fruits reduced as MSWC content increased into the substrate but addition of fertilizer reversed this trend and maintained the fruit marketability. MSWC affected quality parameters and reduced fruit acidity, total phenols but increased fruit lightness. No differences observed in fruit dry matter content, fruit firmness, green colour, total soluble sugars and EC of peppers and bacteria (total coliform and E. coli) units. Low content of MSWC improved plant growth and maintained fruit fresh weight for greenhouse pepper without affecting plant yield, while fertigation acted beneficially. Nikos Tzortzakis, Sofia Gouma, Eleni Dagianta, Christos Saridakis, Maria Papamichalaki, Dimitrios Goumas, and Thrassyvoulos Manios Copyright © 2012 Nikos Tzortzakis et al. All rights reserved. Morphostructural Characterization of Rice Grain (Oryza sativa L.) Variety Morelos A-98 during Filling Stages Thu, 03 May 2012 09:06:02 +0000 The morphostructure of grain rice Morelos A-98 was characterized in five stages of physiological maturation, in order to generate morphometric information during the filling process. Micrographic images from optical and scanning electron microscopy coupled to a digital capture system were used. Images were digitally processed to measure different descriptors such as shape, fractal dimension, and surface texture. Results showed that, two weeks after anthesis, an accelerated grain filling was observed, particularly on those grains positioned in the distal panicle zone, compared to those located in the base of this one. As deposition of assimilates in the grain increased, the area and perimeter of the transversal cut of the grains also increased (𝑃≤0.05); meanwhile, the rounded shape factor tended to increase as well (𝑃≤0.05), while the elliptic shape factor decreased. As the dehydrated endosperm passed from “milky” to “doughy” stages, values of fractal dimension area and endosperm perimeter as well as surface texture values showed that grain borders tended to become smoother and that there was a greater structured endosperm area (𝑃≤0.05). Rosa Elena Espinosa-Mendoza, Javier Solorza-Feria, Martha Lucía Arenas-Ocampo, Brenda Hildeliza Camacho-Díaz, Alma Angélica Del Villar-Martínez, Pablo Emilio Vanegas-Espinoza, and Antonio Ruperto Jiménez-Aparicio Copyright © 2012 Rosa Elena Espinosa-Mendoza et al. All rights reserved. Small Cages with Insect Couples Provide a Simple Method for a Preliminary Assessment of Mating Disruption Thu, 03 May 2012 08:59:17 +0000 Mating disruption by sex pheromones is a sustainable, effective and widely used pest management scheme. A drawback of this technique is its challenging assessment of effectiveness in the field (e.g., spatial scale, pest density). The aim of this work was to facilitate the evaluation of field-deployed pheromone dispensers. We tested the suitability of small insect field cages for a pre-evaluation of the impact of sex pheromones on mating using the grape moths Eupoecilia ambiguella and Lobesia botrana, two major pests in vineyards. Cages consisted of a cubic metal frame of 35 cm sides, which was covered with a mosquito net of 1500 μm mesh size. Cages were installed in the centre of pheromone-treated and untreated vineyards. In several trials, 1 to 20 couples of grape moths per cage were released for one to three nights. The proportion of mated females was between 15 to 70% lower in pheromone-treated compared to untreated vineyards. Overall, the exposure of eight couples for one night was adequate for comparing different control schemes. Small cages may therefore provide a fast and cheap method to compare the effectiveness of pheromone dispensers under standardised semi-field conditions and may help predict the value of setting-up large-scale field trials. Françoise Briand, Patrick M. Guerin, Pierre-Joseph Charmillot, and Patrik Kehrli Copyright © 2012 Françoise Briand et al. All rights reserved. Improving the S-Shape Solar Radiation Estimation Method for Supporting Crop Models Thu, 03 May 2012 08:01:20 +0000 In line with the critical comments formulated in relation to the S-shape global solar radiation estimation method, the original formula was improved via a 5-step procedure. The improved method was compared to four-reference methods on a large North-American database. According to the investigated error indicators, the final 7-parameter S-shape method has the same or even better estimation efficiency than the original formula. The improved formula is able to provide radiation estimates with a particularly low error pattern index (PIdoy) which is especially important concerning the usability of the estimated radiation values in crop models. Using site-specific calibration, the radiation estimates of the improved S-shape method caused an average of 2.72±1.02 (𝛼=0.05) relative error in the calculated biomass. Using only readily available site specific metadata the radiation estimates caused less than 5% relative error in the crop model calculations when they were used for locations in the middle, plain territories of the USA. Nándor Fodor Copyright © 2012 Nándor Fodor. All rights reserved. Monitoring Resistance to Spinosad in the Melon Fly (Bactrocera cucurbitae) in Hawaii and Taiwan Wed, 02 May 2012 17:08:49 +0000 Spinosad is a natural insecticide with desirable qualities, and it is widely used as an alternative to organophosphates for control of pests such as the melon fly, Bactrocera cucurbitae (Coquillett). To monitor the potential for development of resistance, information about the current levels of tolerance to spinosad in melon fly populations were established in this study. Spinosad tolerance bioassays were conducted using both topical applications and feeding methods on flies from field populations with extensive exposure to spinosad as well as from collections with little or no prior exposure. Increased levels of resistance were observed in flies from the field populations. Also, higher dosages were generally required to achieve specific levels of mortality using topical applications compared to the feeding method, but these levels were all lower than those used for many organophosphate-based food lures. Our information is important for maintaining effective programs for melon fly management using spinosad. Ju-Chun Hsu, David S. Haymer, Ming-Yi Chou, Hai-Tung Feng, Hsaio-Han Chen, Yu-Bing Huang, and Ronald F. L. Mau Copyright © 2012 Ju-Chun Hsu et al. All rights reserved. Effect of NPK Fertilizer on Chemical Composition of Pumpkin (Cucurbita pepo Linn.) Seeds Wed, 02 May 2012 17:02:19 +0000 An investigation of the proximate composition and antioxidant profile of pumpkin seeds obtained from different levels of NPK 15 : 15 : 15 compound fertilizer application at the Obafemi Awolowo University, Ile-Ife, Nigeria was carried out. Pumpkin seeds were grown in 2010 for two cropping seasons (May to August and August to November), and the following fertilizer rates were applied: 0, 50, 100, 150, 200, and 250 kg/ha. Standard analytical methods were used to determine protein, crude fibre, ash, fat, carbohydrate, antioxidant activities, phenol, flavonoid, proanthocyanidin, and anthocyanin. The highest concentrations of the proximate and antioxidants analysed were found from the seeds of control and those treated with lower NPK rates. The mean protein, ash, crude fibre, and carbohydrate values of pumpkin seeds at zero to 100 kg NPK/ha were 27%, 1.56%, 0.56%, and 11.7% respectively. At these same levels of fertilizer, pumpkin seed oil yield was 59%. Antioxidant activities ranged from 89.9 to 90.4% while total phenol was 47 mg/100 g. Except for carbohydrate, the % concentration of nutrients and antioxidants in pumpkin seeds was significantly (𝑃=0.05) depressed with fertilizer rates above 100 g/ha. F. M. Oloyede, I. O. Obisesan, G. O. Agbaje, and E. M. Obuotor Copyright © 2012 F. M. Oloyede et al. All rights reserved. Influence of Growth Regulators on Callogenesis and Somatic Embryo Development in Date Palm (Phoenix dactylifera L.) Sahelian Cultivars Wed, 02 May 2012 16:52:42 +0000 This study provides a physiological analysis of somatic embryogenesis in four elite cultivars of date palms: Ahmar, Amsekhsi, Tijib, and Amaside, from the initial callogenesis to establishment and proliferation of embryogenic suspension cultures. Somatic embryos development and in vitro plants rooting were also studied. For each step, auxins and cytokinins concentrations were optimised. The primary callogenesis from leaf explants of seedlings appeared highly dependent on genotype. Ahmar (80%) and Amsekhsi (76%) appeared highly callogenic, whereas Tijib (10%) and Amaside (2%) produced low amounts of calluses. 2,4-Dichlorophenoxyacetic acid appeared favorable to the induction of primary callogenesis and its effect was enhanced by the addition of benzyl adenine or adenine sulfate. Secondary friable calli obtained from chopped granular calli were used to initiate embryogenic cell suspensions in media supplied with 2,4-dichlorophenoxyacetic acid. Suspension cultures showed a growth rate of fourfold after four subcultures in presence of 2,4-dichlorophenoxyacetic acid 2 mg/L. Our results showed that a seven-day transitory treatment with benzyl adenine 0,5 mg/L was necessary to optimize embryos development. Naphthalene acetic acid induced the development of primary orthogravitropic roots during embryos germination. The comparison with cytofluorometry of nuclear DNA amounts showed no significant difference in ploidy level between regenerated plants and seedlings. Djibril Sané, Frédérique Aberlenc-Bertossi, Léopold Ibrahima Djitiningo Diatta, Badara Guèye, Abdourahman Daher, Maurice Sagna, Yves Duval, and Alain Borgel Copyright © 2012 Djibril Sané et al. All rights reserved. Increased Yield Surplus of Vetch-Wheat Rotations under Drought in a Mediterranean Environment Wed, 02 May 2012 15:14:28 +0000 This paper presents results of a plot-scale field experiment aiming at the comparative evaluation of agricultural practices and agricultural systems as far as their performance in very-low-rainfall conditions is concerned. Wheat was seeded after common vetch, treated in three different ways, after fallow or after the incorporation of dried sewage sludge or straw. Grain and straw yields and grain characteristics were always compared with conventional wheat monoculture without any additional organic inputs. Results showed a clear positive effect of vetch on next year's wheat yield and an increase in grain protein. Not only did the exceptionally dry season mask this effect, but also vetch-wheat systems were proved to be more effective in restraining wheat yield reductions, which are unavoidable under drought, marking these systems the most promising for improving sustainability and stability of rainfed agriculture. Panagiotis Dalias Copyright © 2012 Panagiotis Dalias. All rights reserved. Impacts of Horticultural Mineral Oils and Two Insecticide Practices on Population Fluctuation of Diaphorina citri and Spread of Huanglongbing in a Citrus Orchard in Sarawak Wed, 02 May 2012 15:02:52 +0000 Aspects of the incidence and spread of the citrus disease huanglongbing (HLB) in relation to the vector Diaphorina citri population fluctuation were studied from January 1999 to December 2001 seasons in a 0.8 ha citrus orchard at Jemukan (1° 33′N, 110° 41′E), Southwest Sarawak in Malaysia. In relation to insecticide and horticultural mineral oils (HMOs) use, levels of HLB infection rose quite rapidly over the next 3 years in the unsprayed control and less rapidly in the other treatments such as imidacloprid, nC24HMO, and triazophos/cypermethrin/chlorpyrifos. Levels of HLB as determined by Polymerase Chain Reaction (PCR) were 42.2%, 9.4%, 11.4%, and 22.7%, respectively. The effects of nC24HMO and conventional pesticides on the citrus psyllid population and parasitoids in citrus orchard were also determined. Stephen Chan Teck Leong, Fatimah Abang, Andrew Beattie, Roland Jui Heng Kueh, and Sing King Wong Copyright © 2012 Stephen Chan Teck Leong et al. All rights reserved. Applying Neural Networks to Hyperspectral and Multispectral Field Data for Discrimination of Cruciferous Weeds in Winter Crops Wed, 02 May 2012 14:44:25 +0000 In the context of detection of weeds in crops for site-specific weed control, on-ground spectral reflectance measurements are the first step to determine the potential of remote spectral data to classify weeds and crops. Field studies were conducted for four years at different locations in Spain. We aimed to distinguish cruciferous weeds in wheat and broad bean crops, using hyperspectral and multispectral readings in the visible and near-infrared spectrum. To identify differences in reflectance between cruciferous weeds, we applied three classification methods: stepwise discriminant (STEPDISC) analysis and two neural networks, specifically, multilayer perceptron (MLP) and radial basis function (RBF). Hyperspectral and multispectral signatures of cruciferous weeds, and wheat and broad bean crops can be classified using STEPDISC analysis, and MLP and RBF neural networks with different success, being the MLP model the most accurate with 100%, or higher than 98.1%, of classification performance for all the years. Classification accuracy from hyperspectral signatures was similar to that from multispectral and spectral indices, suggesting that little advantage would be obtained by using more expensive airborne hyperspectral imagery. Therefore, for next investigations, we recommend using multispectral remote imagery to explore whether they can potentially discriminate these weeds and crops. Ana-Isabel de Castro, Montserrat Jurado-Expósito, María-Teresa Gómez-Casero, and Francisca López-Granados Copyright © 2012 Ana-Isabel de Castro et al. All rights reserved. Covering Materials Incorporating Radiation-Preventing Techniques to Meet Greenhouse Cooling Challenges in Arid Regions: A Review Wed, 02 May 2012 13:58:34 +0000 Cooling greenhouses is essential to provide a suitable environment for plant growth in arid regions characterized by brackish water resources. However, using conventional cooling methods are facing many challenges. Filtering out near infra-red radiation (NIR) at the greenhouse cover can significantly reduce the heating load and can solve the overheating problem of the greenhouse air. This paper is to review (i) the problems of using conventional cooling methods and (ii) the advantages of greenhouse covers that incorporate NIR reflectors. This survey focuses on how the cover type affects the transmittance of photosynthetically active radiation (PAR), the reflectance or absorptance of NIR and the greenhouse air temperature. NIR-reflecting plastic films seem to be the most suitable, low cost and simple cover for greenhouses under arid conditions. Therefore, this review discusses how various additives should be incorporated in plastic film to increase its mechanical properties, durability and ability to stand up to extremely harsh weather. Presently, NIR-reflecting covers are able to reduce greenhouse air temperature by no more than 5°C. This reduction is not enough in regions where the ambient temperature may exceed 45°C in summer. There is a need to develop improved NIR-reflecting plastic film covers. Ahmed M. Abdel-Ghany, Ibrahim M. Al-Helal, Saeed M. Alzahrani, Abdullah A. Alsadon, Ilias M. Ali, and Rabeh M. Elleithy Copyright © 2012 Ahmed M. Abdel-Ghany et al. All rights reserved. Influence of Drought and Sowing Time on Protein Composition, Antinutrients, and Mineral Contents of Wheat Wed, 02 May 2012 10:01:19 +0000 The present study in a two-year experiment investigated the influence of drought and sowing time on protein composition, antinutrients, and mineral contents of wheat whole meal of two genotypes differing in their water requirements. Different thermal conditions prevailing during the grain filling period under different sowing time generated a large effect on the amount of total soluble proteins. Late sown conditions offered higher protein content accompanied by increased albumin-globulin but decreased glutenin content. Fe content was increased to 20–23%; however, tannin decreased to 18–35% under early sown rain-fed conditions as compared to irrigated timely sown conditions in both the genotypes. Activity of trypsin inhibitor was decreased under rain-fed conditions in both genotypes. This study inferred that variable sowing times and irrigation practices can be used for inducing variation in different wheat whole meal quality characteristics. Lower temperature prevailing under early sown rain-fed conditions; resulted in higher protein content. Higher Fe and lower tannin contents were reported under early sown rain-fed conditions however, late sown conditions offered an increase in phytic acid accompanied by decreased micronutrients and glutenin contents. Sondeep Singh, Anil K. Gupta, and Narinder Kaur Copyright © 2012 Sondeep Singh et al. All rights reserved. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize Tue, 01 May 2012 19:01:49 +0000 UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE) were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted. Carlos M. Correia, João F. Coutinho, Eunice A. Bacelar, Berta M. Gonçalves, Lars Olof Björn, and José Moutinho Pereira Copyright © 2012 Carlos M. Correia et al. All rights reserved. Improving Growth and Productivity of Oleiferous Brassicas under Changing Environment: Significance of Nitrogen and Sulphur Nutrition, and Underlying Mechanisms Tue, 01 May 2012 16:02:09 +0000 Mineral nutrients are the integral part of the agricultural systems. Among important plant nutrients, nitrogen (N) and sulphur (S) are known essential elements for growth, development, and various physiological functions in plants. Oleiferous brassicas (rapeseed and mustard) require higher amounts of S in addition to N for optimum growth and yield. Therefore, balancing S-N fertilization, optimization of nutrient replenishment, minimization of nutrient losses to the environment, and the concept of coordination in action between S and N could be a significant strategy for improvement of growth and productivity of oleiferous brassicas. Additionally, positive interaction between S and N has been reported to be beneficial for various aspects of oilseed brassicas. The current paper updates readers on the significance of N and S for the improvement of plant growth, development, and productivity in detail. In addition, S-N nutrition-mediated control of major plant antioxidant defense system components involved in the removal and/or metabolism of stress-induced/generated reactive oxygen species in plants (hence, the control of plant growth, development, and productivity) has been overviewed. Naser A. Anjum, Sarvajeet S. Gill, Shahid Umar, Iqbal Ahmad, Armando C. Duarte, and Eduarda Pereira Copyright © 2012 Naser A. Anjum et al. All rights reserved. Quality and Trace Element Profile of Tunisian Olive Oils Obtained from Plants Irrigated with Treated Wastewater Tue, 01 May 2012 15:56:26 +0000 In the present work the use of treated wastewater (TWW) to irrigate olive plants was monitored. This type of water is characterized by high salinity and retains a substantial amount of trace elements, organic and metallic compounds that can be transferred into the soil and into the plants and fruits. In order to evaluate the impact of TWW on the overall quality of the oils, the time of contact of the olives with the soil has been taken into account. Multi-element data were obtained using ICP-MS. Nineteen elements (Li, B, Na, Mg, Al, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ba and La) were submitted for statistical analysis. Using analysis of variance, linear discriminant analysis and principal component analysis it was possible to differentiate between oils produced from different batches of olives whose plants received different types of water. Also, the results showed that there was correlation between the elemental and mineral composition of the water used to irrigate the olive plots and the elemental and mineral composition of the oils. Cinzia Benincasa, Mariem Gharsallaoui, Enzo Perri, Caterina Briccoli Bati, Mohamed Ayadi, Moncen Khlif, and Slimane Gabsi Copyright © 2012 Cinzia Benincasa et al. All rights reserved. Crop Row Detection in Maize Fields Inspired on the Human Visual Perception Mon, 30 Apr 2012 15:35:38 +0000 This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images. The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of two main processes: image segmentation and crop row detection. The first one applies a threshold to separate green plants or pixels (crops and weeds) from the rest (soil, stones, and others). It is based on a fuzzy clustering process, which allows obtaining the threshold to be applied during the normal operation process. The crop row detection applies a method based on image perspective projection that searches for maximum accumulation of segmented green pixels along straight alignments. They determine the expected crop lines in the images. The method is robust enough to work under the above-mentioned undesired effects. It is favorably compared against the well-tested Hough transformation for line detection. J. Romeo, G. Pajares, M. Montalvo, J. M. Guerrero, M. Guijarro, and A. Ribeiro Copyright © 2012 J. Romeo et al. All rights reserved. Effect of Irrigation to Winter Wheat on the Radiation Use Efficiency and Yield of Summer Maize in a Double Cropping System Mon, 30 Apr 2012 15:23:02 +0000 In north China, double cropping of winter wheat and summer maize is a widely adopted agricultural practice, and irrigation is required to obtain a high yield from winter wheat, which results in rapid aquifer depletion. In this experiment conducted in 2001-2002, 2002-2003, and 2004-2005, we studied the effects of irrigation regimes during specific winter wheat growing stage with winter wheat and summer maize double cropping systems; we measured soil moisture before sowing (SMBS), the photosynthetic active radiation (PAR) capture ratio, grain yield, and the radiation use efficiency (RUE) of summer maize. During the winter wheat growing season, irrigation was applied at the jointing, heading, or milking stage, respectively. The results showed that increased amounts of irrigation and irrigation later in the winter wheat growing season improved SMBS for summer maize. The PAR capture ratio significantly (LSD, 𝑃<0.05) increased with increased SMBS, primarily in the 3 spikes leaves. With improved SMBS, both the grain yield and RUE increased in all the treatments. These results indicate that winter wheat should be irrigated in later stages to achieve reasonable grain yield for both crops. Li Quanqi, Chen Yuhai, Zhou Xunbo, Yu Songlie, and Guo Changcheng Copyright © 2012 Li Quanqi et al. All rights reserved. Deployment of Municipal Solid Wastes as a Substitute Growing Medium Component in Marigold and Basil Seedlings Production Mon, 30 Apr 2012 13:55:35 +0000 The possible use of municipal solid waste compost (MSWC) in the production of marigold and basil seedlings examined. Six medium prepared from commercial peat (CP) and MSWC (0, 15, 30, 45, 60, and 100% v/v). There was not any plant growth when MSWC used alone (100%). The addition of MSWC in low content (15% and 30%) improved seed emergence for marigold and basil respectively, while greater content revealed opposed impacts. Mean emergence time delayed as MSWC content increased into substrates. Addition of MSWC (especially in content greater than 30%) into CP reduced (from 34 to 64%) plant height, leaf number and stem diameter as a consequence reduced plant fresh weight (plant biomass) for both species. The number of lateral stems decreased (up to 81%) in basil when MSWC added into substrate mixtures. Chlorophyll b content decreased (up to 58%) in substrates with MSWC content greater than 15% or 30% while similar reduction observed in content of Chlorophyll a and total carotenoids for basil with MSWC > 60%. However, Chlorophyll a and total carotenoids content increased as MSWC content increased for marigold. K and Na leaf content increased but P equivalent decreased as MSWC content increased. Nursery-produced basil and marigold seedlings grown in 15% MSWC; displayed quality indices similar to those recorded for conventional mixtures of peat and may act as component substitute. Nikos Tzortzakis, Sofia Gouma, Costas Paterakis, and Thrassyvoulos Manios Copyright © 2012 Nikos Tzortzakis et al. All rights reserved. An Efficient In Vitro Propagation Protocol of Cocoyam [Xanthosoma sagittifolium (L) Schott] Mon, 30 Apr 2012 11:20:19 +0000 Sprouted corm sections of “South Dade” white cocoyam were potted and maintained in a greenhouse for 8 weeks. Shoot tips of 3–5 mm comprising the apical meristem with 4–6 leaf primordial, and approximately 0.5 mm of corm tissue at the base. These explants were treated to be used into the culture medium. A modified Gamborg’s B5 mineral salts supplemented with 0.05 μM 1-naphthaleneacetic acid (NAA) were used throughout the study. Thidiazuron (TDZ) solution containing 0.01% dimethyl sulfoxide (DMSO) was used. Erlenmeyer flasks and test tubes were used for growing cultures. The effect of different media substrate, thidiazuron, and the interaction between TDZ and Benzylaminopurine (BAP) on cocoyam culture were tested. Results indicated that cocoyam can be successfully micropropagated in vitro through various procedures. All concentrations tested (5–20 μM BAP and 1–4 μM TDZ) produced more axillary shoots per shoot tip than the control without cytokinins. Greater proliferation rates were obtained through the use of 20 μM BAP and 2 μM TDZ, respectively, 12 weeks from initiation. Shoots produced with BAP were larger and more normal in appearance than those produced with TDZ, which were small, compressed, and stunted. The use of stationary liquid media is recommended for economic reasons. Anne E. Sama, Harrison G. Hughes, Mohamed S. Abbas, and Mohamed A. Shahba Copyright © 2012 Anne E. Sama et al. All rights reserved. The Waterlogging Tolerance of Wheat Varieties in Western of Turkey Sun, 29 Apr 2012 11:37:43 +0000 This research was conducted to determine the wheat varieties against waterlogging which was clearly increased in recent years. For this purpose, this study was performed at Field Crops and Soil Science Department of Agricultural Faculty of Adnan Menderes University during wheat growth stages of 2007-2008. The experimental design was randomized complete block design with split split plot arrangements. The main plots were temperature applications (heat and normal), the growth periods (Zadoks scale; GS14, GS32, GS14 + GS32, and control) were split plots and varieties were split-split plots. The eight different wheat varieties were evaluated in the pots. The waterlogging was performed during GS14, GS32 and GS14 + GS32. In a pot experiment, plants were subjected to waterlogging to the soil surface for 10 days. All applications and varieties decreased the single plant yield. The waterlogging caused a yield loss compared with wheat grown on well-drained soil. In this study, the crop loss due to waterlogging is highly temperature dependent. The severity of the effects of the waterlogging depends on the growth stage of the plot. When all applications were compared with control by means of yield performance, Sagittario and Basribey varieties were less affected than the others. Ilkay Yavas, Aydin Unay, and Mehmet Aydin Copyright © 2012 Ilkay Yavas et al. All rights reserved. Psidium guajava and Piper betle Leaf Extracts Prolong Vase Life of Cut Carnation (Dianthus caryophyllus) Flowers Sun, 29 Apr 2012 09:36:52 +0000 The effect of leaf extracts of Psidium guajava and Piper betle on prolonging vase life of cut carnation flowers was studied. “Carola” and “Pallas Orange” carnation flowers, at bud stage, were pulsed 24 hours with a floral preservative. Then, flowers were placed in a vase solution containing sprite and a “germicide” (leaf extracts of P. guajava and P. betle, 8-HQC, or a copper coin). Flowers treated with 8-HQC, copper coin, and leaf extracts had longer vase life, larger flower diameter, and higher rate of water uptake compared to control (tap water). The leaf extracts of P. guajava and P. betle showed highest antibacterial and antifungal activities compared to the other treatments. Both showed similar effects on flower quality as the synthetic germicide, 8-HQC. Therefore, these extracts are likely natural germicides to prolong vase life of cut flowers. M. M. Rahman, S. H. Ahmad, and K. S. Lgu Copyright © 2012 M. M. Rahman et al. All rights reserved. Socioeconomic Importance of the Banana Tree (Musa Spp.) in the Guinean Highland Savannah Agroforests Thu, 26 Apr 2012 15:40:58 +0000 Home gardens are defined as less complex agroforests which look like and function as natural forest ecosystems but are integrated into agricultural management systems located around houses. Investigations were carried out in 187 households. The aim of the study was to identify the different types of banana home gardens existing in the periurban zone of Ngaoundere town. The results showed that the majority of home gardens in the area were very young (less than 15 years old) and very small in size (less than 1 ha). Eleven types of home gardens were found in the periurban area of Ngaoundere town. The different home garden types showed important variations in all their structural characteristics. Two local species of banana are cultivated in the systems, Musa sinensis and Musa paradisiaca. The total banana production is 3.57 tons per year. The total quantity of banana consumed in the periurban zone was 3.54 tons (93.5%) whereas 1.01 tons were sold in local or urban markets. The main banana producers belonged to home gardens 2, 4, 7, and 9. The quantity of banana offered to relatives was more than what the farmers received from others. Farmers, rely on agroforests because the flow of their products helps them consolidate friendship and conserve biodiversity at the same time. Pierre Marie Mapongmetsem, Bernard Aloys Nkongmeneck, and Hamide Gubbuk Copyright © 2012 Pierre Marie Mapongmetsem et al. All rights reserved. Effect of Growth Stage on the Efficacy of Postemergence Herbicides on Four Weed Species of Direct-Seeded Rice Tue, 24 Apr 2012 11:38:58 +0000 The efficacy of bispyribac-sodium, fenoxaprop + ethoxysulfuron, and penoxsulam + cyhalofop was evaluated against barnyardgrass, Chinese sprangletop, junglerice, and southern crabgrass when applied at four-, six-, and eight-leaf stages. When applied at the four-leaf stage, bispyribac-sodium provided greater than 97% control of barnyardgrass, junglerice, and southern crabgrass; however, it was slightly weak (74% control) on Chinese sprangletop. Irrespective of the weed species, fenoxaprop + ethoxysulfuron provided greater than 97% control when applied at the four-leaf stage. At the same leaf stage, penoxsulam + cyhalofop controlled 89 to 100% barnyardgrass, Chinese sprangletop, and junglerice and only 54% of southern crabgrass. The efficacy of herbicides was reduced when applied at the eight-leaf stage of the weeds; however, at this stage, fenoxaprop + ethoxysulfuron was effective in controlling 99% of Chinese sprangletop. The results demonstrate the importance of early herbicide application in controlling the weeds. The study identified that at the six-leaf stage of the weeds, fenoxaprop + ethoxysulfuron can effectively control Chinese sprangletop and southern crabgrass, penoxsulam + cyhalofop can effectively control Chinese sprangletop, and bispyribac-sodium can effectively control junglerice. Bhagirath Singh Chauhan and Seth Bernard Abugho Copyright © 2012 Bhagirath Singh Chauhan and Seth Bernard Abugho. All rights reserved. Temporal Downscaling of Crop Coefficient and Crop Water Requirement from Growing Stage to Substage Scales Tue, 24 Apr 2012 11:37:32 +0000 Crop water requirement is essential for agricultural water management, which is usually available for crop growing stages. However, crop water requirement values of monthly or weekly scales are more useful for water management. A method was proposed to downscale crop coefficient and water requirement from growing stage to substage scales, which is based on the interpolation of accumulated crop and reference evapotranspiration calculated from their values in growing stages. The proposed method was compared with two straightforward methods, that is, direct interpolation of crop evapotranspiration and crop coefficient by assuming that stage average values occurred in the middle of the stage. These methods were tested with a simulated daily crop evapotranspiration series. Results indicate that the proposed method is more reliable, showing that the downscaled crop evapotranspiration series is very close to the simulated ones. Songhao Shang Copyright © 2012 Songhao Shang. All rights reserved. Efficacy of Some Botanical Extracts against Trogoderma granarium in Wheat Grains with Toxicity Evaluation Thu, 19 Apr 2012 13:09:58 +0000 In an attempt to find alternative control methods for stored products insects, extracts of seven plant species (Cassia senna, Caesalpinia gilliesii, Thespesia populnea var. acutiloba, Chrysanthemum frutescens, Euonymus japonicus, Bauhinia purpurea, and Cassia fistula) were evaluated under laboratory conditions for their ability to protect wheat (Triticum spp.) grains against Trogoderma granarium insect. Moreover, gas chromatography-mass spectrometry (GC-MS) analysis was carried to identify the chemical components of the most effective plant extract against T. granarium. Furthermore, the safety of the most effective plant extract was evaluated with respect to biochemical and histological changes in treated rats relative to control. The results revealed that, the tested botanical extracts showed high efficiency against T. granarium with respect to mortality and progeny of the adults. C. senna was the most effective botanical extract against T. granarium. The GC-MS analysis of the most effective plant extract showed the presence of different bioactive compounds that is known by its insecticidal activity. The most effective plant extract showed no toxicity on treated rats relative to control with respect to biochemical and histological changes. The results suggest the ability of using these plant extracts for wheat grains protection as a safe alternative to insecticides. Aly S. Derbalah Copyright © 2012 Aly S. Derbalah. All rights reserved. Determination of Effective Factors on Power Requirement and Conveying Capacity of a Screw Conveyor under Three Paddy Grain Varieties Thu, 19 Apr 2012 13:06:41 +0000 An experiment was conducted to investigate the effect of screw speed, inclination angle and variety on the required power, and conveying capacity of a screw conveyor. The experiment was designed with four levels of screw speed (600, 800, 1000, and 1200 rpm), five levels of inclination angle (0, 20, 40, 60, and 80∘), and three levels of variety (Alikazemi, Hashemi, and Khazar). The Length, diameter, and pitch of screw were 2, 0.78, and 0.5 m, respectively. The experimental design was a randomized complete block (RCB) with factorial layout. Maximum and minimum power requirements of tested screw conveyor were 99.29 and 81.16 Watt corresponding to conveying capacity of 3.210 and 1.975 ton/hour obtained for khazar and Alikazemi varieties, respectively. The results indicated that as screw inclination angle increased from 0 to 80∘, the conveying capacity decreased significantly from 3.581 to 0.932 t/h. It can be concluded that the most conveying capacity was 4.955 t/h at tests with khazar variety and conveyor inclination angle zero degree. Ezzatollah Askari Asli-Ardeh and Ahmad Mohsenimanesh Copyright © 2012 Ezzatollah Askari Asli-Ardeh and Ahmad Mohsenimanesh. All rights reserved. Diversity of the Neglected and Underutilized Crop Species of Importance in Benin Thu, 19 Apr 2012 11:12:41 +0000 Many of the plant species that are cultivated for food across the world are neglected and underutilized. To assess their diversity in Benin and identify the priority species and establish their research needs, a survey was conducted in 50 villages distributed throughout the country. The study revealed 41 neglected and underutilized crop species (NUCS) among which 19 were identified as of priority base on 10 criteria among which included their extent and degree of consumption. Reasons for neglect vary with the producers and the agricultural technicians. Market surveys revealed that NUCS are important source of household incomes and substantially contribute to poverty reduction. Review of the literature available revealed that most of the species are rich in nutrients and have some proven medicinal values and the promotion of their use would help in combating malnutrition and improving the health status of the local populations. The knowledge gaps and research needs are immense on most of the species identified as no concrete scientific data is nationally available. In terms of research, almost all has to be done starting from basic ethnobotanical investigation. The results will help the scientists and students willing to conduct research on NUCS in Benin to better orient their research programs. A. Dansi, R. Vodouhè, P. Azokpota, H. Yedomonhan, P. Assogba, A. Adjatin, Y. L. Loko, I. Dossou-Aminon, and K. Akpagana Copyright © 2012 A. Dansi et al. All rights reserved. Supercritical Extraction from Vinification Residues: Fatty Acids, α-Tocopherol, and Phenolic Compounds in the Oil Seeds from Different Varieties of Grape Thu, 19 Apr 2012 10:58:58 +0000 Supercritical fluid extraction has been widely employed in the extraction of high purity substances. In this study, we used the technology to obtain oil from seeds from a variety of grapes, from vinification residues generated in the Southern region of the state of Rio Grande do Sul, Brazil. This work encompasses three varieties of Vitis vinifera (Moscato Giallo, Merlot, and Cabernet Sauvignon) and two of Vitis labrusca (Bordô e Isabel), harvested in 2005 and 2006. We obtained the highest oil content from Bordô (15.40%) in 2005 and from Merlot (14.66%), 2006. The biggest concentration of palmitic, stearic, and linoleic acids was observed in Bordô, 2005, and in Bordô, Merlot, and Moscato Giallo, 2006. Bordô showed the highest concentration of oleic acid and α-tocopherol in both seasons too. For the equivalent of procyanidins, we did not notice significant difference among the varieties from the 2005 harvest. In 2006, both varieties Isabel and Cabernet Sauvignon showed a value slightly lower than the other varieties. The concentration of total phenolics was higher in Bordô and Cabernet Sauvignon. The presence of these substances is related to several important pharmacological properties and might be an alternative to conventional processes to obtain these bioactives. F. Agostini, R. A. Bertussi, G. Agostini, A. C. Atti dos Santos, M. Rossato, and R. Vanderlinde Copyright © 2012 F. Agostini et al. All rights reserved. Griffing's Methods Comparison for General and Specific Combining Ability in Cucumber Thu, 19 Apr 2012 10:47:20 +0000 A comparison among two forms of half-diallel analysis was made. The different half-diallel techniques used were Griffing's model I, method 2 and 4. These methods of diallel analysis were found to be interrelated. However, as Griffing's model I, method 4 partitioned heterosis into different components as well as gave information about combining ability and this method had certainly some advantages over the other. The results further indicated using parental generations in the second Griffing method may cause biased estimate of the GCA and SCA variances. Thus, using the fourth Griffing method is more suitable than the other methods in providing time, cost, and facilities, and it is recommended as an applicable method. J. A. Olfati, H. Samizadeh, B. Rabiei, and Gh. Peyvast Copyright © 2012 J. A. Olfati et al. All rights reserved. Combining Ability Analysis in Complete Diallel Cross of Watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) Sun, 01 Apr 2012 09:28:44 +0000 The experiments were carried out in two research stations (MARDI Bukit Tangga, Kedah, and MARDI Seberang Perai, Penang) in Malaysia. The crossings were performed using the four inbred lines in complete diallel cross including selfs and reciprocals. We evaluated the yield components and fruit characters such as fruit yield per plant, vine length, days to fruit maturity, fruit weight, total soluble solid content, and rind thickness over a period of two planting seasons. General combining ability and its interaction with locations were statistically significant for all characteristics except number of fruits per plant across the environments. Results indicated that the additive genetic effects were important to the inheritance of these traits and the expression of additive genes was influenced greatly by environments. In addition, specific combining ability effect was statistically evident for fruit yield per plant, vine length, days to first female flower, and fruit weight. Most of the characters are simultaneously controlled by additive and nonadditive gene effects. This study demonstrated that the highest potential and promising among the crosses was cross P2 (BL-14) × P3 (6372-4), which possessed prolific plants, with early maturity, medium fruit weight and high soluble solid contents. Therefore this hybrid might be utilized for developing high yielding watermelon cultivars and may be recommended for commercial cultivation. M. Bahari, M. Y. Rafii, G. B. Saleh, and M. A. Latif Copyright © 2012 M. Bahari et al. All rights reserved. Planting Jatropha curcas on Constrained Land: Emission and Effects from Land Use Change Sun, 01 Apr 2012 08:45:04 +0000 A study was carried out to assess carbon emission and carbon loss caused from land use change (LUC) of converting a wasteland into a Jatropha curcas plantation. The study was conducted for 12 months at a newly established Jatropha curcas plantation in Port Dickson, Malaysia. Assessments of soil carbon dioxide (CO2) flux, changes of soil total carbon and plant biomass loss and growth were made on the wasteland and on the established plantation to determine the effects of land preparation (i.e., tilling) and removal of the wasteland's native vegetation. Overall soil CO2 flux showed no significant difference (𝑃<0.05) between the two plots while no significant changes (𝑃<0.05) on soil total carbon at both plots were detected. It took 1.5 years for the growth of Jatropha curcas to recover the biomass carbon stock lost during land conversion. As far as the present study is concerned, converting wasteland to Jatropha curcas showed no adverse effects on the loss of carbon from soil and biomass and did not exacerbate soil respiration. M. S. Firdaus and M. H. A. Husni Copyright © 2012 M. S. Firdaus and M. H. A. Husni. All rights reserved. Diversity of Catechin in Northeast Indian Tea Cultivars Tue, 14 Feb 2012 14:00:34 +0000 Tea (Camellia sinensis L.) leaf contains a large amount of catechins (a group of very active flavonoids) which contribute to major quality attributes of black tea. Based on morphological characters tea plants were classified as Assam, China, and Cambod varieties. The present study is an attempt for biochemical fingerprinting of the tea varieties based on catechin composition in green leaf of cultivars grown in Northeast India. Assam variety cultivars contained the highest level of catechins followed by Cambod and China. The average catechin contents were 231 ± 7 mg g-1, 202 ± 5 mg g-1, and 157 ± 4 mg g-1 of dry weight of green leaf for Assam, Cambod, and China cultivars, respectively. Among the individual catechins the variations in epigallocatechin gallate (EGCG) and epigallocatechin (EGC) were the most prominent among the varieties. High EGC content was found to be a characteristic of Assam variety which was further corroborated through multivariate analysis. Santanu Sabhapondit, Tanmoy Karak, Lakshi Prasad Bhuyan, Bhabesh Chandra Goswami, and Mridul Hazarika Copyright © 2012 Santanu Sabhapondit et al. All rights reserved. Ammonia Volatilization from Urea-Application Influenced Germination and Early Seedling Growth of Dry Direct-Seeded Rice Wed, 01 Feb 2012 13:29:02 +0000 Poor seed germination and early seedling growth associated with urea-induced soil ammonia volatilization are major constraints in the adoption of dry direct-seeded rice. To directly examine soil ammonia volatilization and its damage to seed germination and early seedling growth of dry direct-seeded rice when urea is applied at seeding, two Petri-dish incubation experiments and a field experiment were conducted. Ammonia volatilization due to urea application significantly reduced seed germination and early seedling growth of dry direct-seedling rice. NBPT significantly reduced ammonia volatilization following urea application. The application of ammonium sulfate, instead of urea at seeding, may mitigate poor crop establishment of dry direct-seeded rice. Root growth of dry direct-seeded rice was more seriously inhibited by soil ammonia volatilization than that of shoot. Results suggest that roots are more sensitive to soil ammonia toxicity than shoots in dry direct-seeded rice system when N is applied as urea at seeding. Xiaoli Qi, Wei Wu, Farooq Shah, Shaobing Peng, Jianliang Huang, Kehui Cui, Hongyan Liu, and Lixiao Nie Copyright © 2012 Xiaoli Qi et al. All rights reserved. Chlorophyll a Fluorescence as a Tool in Evaluating the Effects of ABA Content and Ethylene Inhibitors on Quality of Flowering Potted Bougainvillea Wed, 04 Jan 2012 10:59:18 +0000 Flowering potted plants during the postproduction stage are usually stored in inadequate environmental conditions. We evaluated the effect of the most common storage conditions and treatments on two Bougainvillea cultivars after harvest and during recovery. Flowering potted Bougainvillea plants were treated with 100 mL 2 mM amino-oxyacetic acid (AOA) or 500 ppb 1-methylcyclopropene (1-MCP) prior storage in dark at 14∘C for simulating transport or storage conditions and, subsequently, transferred to growth chambers at 20∘C in the light for one week for evaluating the recovery ability. The plant stress during the experiments was assessed by ethylene, ABA, and chlorophyll a fluorescence measurements. Ethylene production was affected by temperature rather than treatments. ABA concentration declined in leaves and flowers during storage and was not affected by treatments. Fluorescence parameters appear to be very useful for screening Bougainvillea cultivars resistant to prolonged storage periods. Antonio Ferrante, Alice Trivellini, Eva Borghesi, and Paolo Vernieri Copyright © 2012 Antonio Ferrante et al. All rights reserved. Seasonal Abundance and Suppression of Fruit-Piercing Moth Eudocima phalonia (L.) in a Citrus Orchard in Sarawak Tue, 29 Nov 2011 00:00:00 +0000 Seasonal population of the fruit-piercing moths Eudocima spp. was monitored throughout the citrus growing seasons in a citrus orchard and in site adjacent to secondary forest from July 2007 to June 2009. The moth was detected practically throughout the year with activity lowest during the wet months (September-February) when fruits are still available and while highest during the dry months (May-June) which also coincided with the main fruiting season. The effects of an 𝑛C24 horticultural mineral oil (HMO) on the citrus fruit damage caused by fruit-piecing moths was also determined. The percent fruit damage was significantly lowest (𝑃≤0.05) in HMO-treated plots (8.4), followed by Dimethoate-treated plots (11.6) and untreated plots (22.5). However, there was no significant difference between HMO and Dimethoate treated plots indicating HMO is effective in reducing percent fruit damage. Stephen Chan Teck Leong and Roland Jui Heng Kueh Copyright © 2011 Stephen Chan Teck Leong and Roland Jui Heng Kueh. All rights reserved. Self-Organized Crystallization Patterns from Evaporating Droplets of Common Wheat Grain Leakages as a Potential Tool for Quality Analysis Mon, 17 Oct 2011 00:00:00 +0000 We studied the evaporation-induced pattern formation in droplets of common wheat kernel leakages prepared out of ancient and modern wheat cultivars as a possible tool for wheat quality analysis. The experiments showed that the substances which passed into the water during the soaking of the kernels created crystalline structures with different degrees of complexity while the droplets were evaporating. The forms ranged from spots and simple structures with single ramifications, through dendrites, up to highly organized hexagonal shapes and fractal-like structures. The patterns were observed and photographed using dark field microscopy in small magnifications. The evaluation of the patterns was performed both visually and by means of the fractal dimension analysis. From the results, it can be inferred that the wheat cultivars differed in their pattern-forming capacities. Two of the analyzed wheat cultivars showed poor pattern formation, whereas another two created well-formed and complex patterns. Additionally, the wheat cultivars were analyzed for their vigor by means of the germination test and measurement of the electrical conductivity of the grain leakages. The results showed that the more vigorous cultivars also created more complex patterns, whereas the weaker cultivars created predominantly poor forms. This observation suggests a correlation between the wheat seed quality and droplet evaporation patterns. Maria Olga Kokornaczyk, Giovanni Dinelli, Ilaria Marotti, Stefano Benedettelli, Daniele Nani, and Lucietta Betti Copyright © 2011 Maria Olga Kokornaczyk et al. All rights reserved. Water Table Management Reduces Tile Nitrate Loss in Continuous Corn and in a Soybean-Corn Rotation Mon, 01 Jan 1900 00:00:00 +0000 Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR) system was compared over 8 years (1991 to 1999) to a controlled tile drainage/subirrigation (CDS) system on a low-slope (0.05 to 0.1%) Brookston clay loam soil (Typic Argiaquoll) in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation) to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994), continuous corn (Zea mays, L.) was grown with annual nitrogen (N) fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999), a soybean (Glycine max L., Merr.)-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM) nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l–1) under DR (11.4 mg N l–1), but not under CDS (7.0 mg N l–1). In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l–1) and CDS (4.0 mg N l–1). During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge relative to continuous corn. CDS and crop rotations with reduced N fertilizer inputs can thus improve the quality of tile discharge water substantially. Craig F. Drury, Chin S. Tan, John D. Gaynor, John W. Daniel Reynolds, Thomas W. Welacky, and Thomas O. Oloya Copyright © 2001 Craig F. Drury et al. All rights reserved. Improving Nutrient Efficiency as a Strategy to Reduce Nutrient Surpluses on Dairy Farms Mon, 01 Jan 1900 00:00:00 +0000 Dutch nutrient policy aims at reducing leaching of agricultural nutrients by internalizing the negative externalities associated with inefficient nutrient use. This is done by taxation of nitrogen and phosphate surpluses that exceed a hectare-based threshold of maximum-allowed surpluses. One management strategy farmers may use to reduce the nutrient surpluses on their farms is to improve the nutrient efficiency of the agricultural production process. This study employs Data Envelopment Analysis (DEA) to calculate nitrogen and phosphate efficiencies and an overall nutrient efficiency measure for a 3-year panel of 114 Dutch dairy farms. Subsequent analyses show the impact of both farm intensity and nutrient efficiency on the nitrogen and phosphate surpluses. It appears that farm intensity has a positive effect on efficiency, but efficiency and intensity exert opposite influences on nutrient surpluses. This is especially the case for nitrogen. The magnitude of a possible reduction of nitrogen surpluses through a strategy of efficiency improvement is therefore limited by the intensity of the farming system, unless the technology with which nutrients are used by the farming system can be further improved or input/output ratios will be altered. C.J.M. Ondersteijn, A.G.J.M. Oude Lansink, G.W.J. Giesen, and R.B.M. Huirne Copyright © 2001 C.J.M. Ondersteijn et al. All rights reserved. Nitrogen Deposition to and Cycling in a Deciduous Forest Mon, 01 Jan 1900 00:00:00 +0000 The project described here seeks to answer questions regarding the role increased nitrogen (N) deposition is playing in enhanced carbon (C) sequestration in temperate mid-latitude forests, using detailed measurements from an AmeriFlux tower in southern Indiana (Morgan-Monroe State Forest, or MMSF). The measurements indicate an average atmosphere-surface N flux of approximately 6 mg-N m-2 day-1 during the 2000 growing season, with approximately 40% coming from dry deposition of ammonia (NH3), nitric acid (HNO3), and particle-bound N. Wet deposition and throughfall measurements indicate significant canopy uptake of N (particularly NH4+) at the site, leading to a net canopy exchange (NCE) of –6 kg-N ha-1 for the growing season. These data are used in combination with data on the aboveground C:N ratio, litterfall flux, and soil net N mineralization rates to indicate the level of potential perturbation of C sequestration at this site. Sara C. Pryor, Rebecca J. Barthelmie, Margaret Carreiro, Melissa L. Davis, Anne Hartley, Bjame Jensen, Andrew Oliphant, Melissa J. C. Randolph, and Justin T. Schoof Copyright © 2001 Sara C. Pryor et al. All rights reserved. Controlled Release Urea as a Nitrogen Source for Spring Wheat in Western Canada: Yield, Grain N Content, and N Use Efficiency Mon, 01 Jan 1900 00:00:00 +0000 Controlled release nitrogen (N) fertilizers have been commonly used in horticultural applications such as turf grasses and container-grown woody perennials. Agrium, a major N manufacturer in North and South America, is developing a low-cost controlled release urea (CRU) product for use in field crops such as grain corn, canola, wheat, and other small grain cereals. From 1998 to 2000, 11 field trials were conducted across western Canada to determine if seed-placed CRU could maintain crop yields and increase grain N and N use efficiency when compared to the practice of side-banding of urea N fertilizer. CRU was designed to release timely and adequate, but not excessive, amounts of N to the crop. Crop uptake of N from seed-placed CRU was sufficient to provide yields similar to those of side-banded urea N. Grain N concentrations of the CRU treatments were higher, on average, than those from side-banded urea, resulting in 4.2% higher N use efficiency across the entire N application range from 25 to 100 kg ha-1. Higher levels of removal of N in grain from CRU compared to side-banded urea can result in less residual N remaining in the soil, and limit the possibility of N losses due to denitrification and leaching. Lenz Haderlein, T.L. Jensen, R.E. Dowbenko, and A.D. Blaylock Copyright © 2001 Lenz Haderlein et al. All rights reserved. Towards Sustainable Use of Potassium in Pineapple Waste Mon, 01 Jan 1900 00:00:00 +0000 Due to the 1997/98 haze problem in South-East Asia and the increasing need for sustainable food production and development, the usual management of crop residues (including pineapple wastes) through burning is prohibited. As a result, the need for alternative uses of pineapple wastes in pineapple production has been emphasized. This study investigated an environmentally friendly means of recycling pineapple leaves for agricultural use. Pineapple leaves were shredded and composted in a composting drum for 30 days. Part of the shredded leaves was ashed in a muffle furnace for 4 h. Humic acid (HA), K-fulvate, and K in HA and compost were analyzed using standard procedures. An ash to water ratio of 1:7 was used to extract 0.1 molar (M) KOH from the shredded leaves. The 0.1 M KOH contained 50% K and was able to extract 20% HA from the composted pineapple leaves. Percent K in the fulvate using 0.1 M KOH was 43. Besides serving as a foliar spray (supplement soil application K fertilizers), source of K for freshwater fish (e.g., tilapia), the HA produced can be used as a soil conditioner. Studies show that between 0.05–0–01 g of HA per kg soil retards runoff by 36% in sandy and sandy loam soils. The K-fulvate can be used as a fluid fertilizer. In addition, the pH of 2 of the K-fulvate suggests it could be used to dissolve phosphate rocks, particularly those in the arid regions where high soil pH does not facilitate the dissolution of these important rocks that serve as one of the sources of phosphorus fertilizer in agriculture. Osumanu H. Ahmed, M.H.A. Husni, A.R. Anuar, and M.M. Hanafi Copyright © 2004 Osumanu H. Ahmed et al. All rights reserved. Effect of K-N-Humates on Dry Matter Production and Nutrient Use Efficiency of Maize in Sarawak, Malaysia Mon, 01 Jan 1900 00:00:00 +0000 Agricultural waste, such as sago waste (SW), is one of the sources of pollution to streams and rivers in Sarawak, particularly those situated near sago processing plants. In addition, unbalanced and excessive use of chemical fertilizers can cause soil and water pollution. Humic substances can be used as organic fertilizers, which reduce pollution. The objectives of this study were to produce K- and ammonium-based organic fertilizer from composted SW and to determine the efficiency of the organic-based fertilizer produced. Humic substances were isolated using standard procedures. Liquid fertilizers were formulated except for T2 (NPK fertilizer), which was in solid form. There were six treatments with three replications. Organic fertilizers were applied to soil in pots on the 10th day after sowing (DAS), but on the 28th DAS, only plants of T2 were fertilized. The plant samples were harvested on the 57th DAS during the tassel stage. The dry matter of plant parts (leaves, stems, and roots) were determined and analyzed for N, P, and K using standard procedures. Soil of every treatment was also analyzed for exchangeable K, Ca, Mg, and Na, organic matter, organic carbon, available P, pH, total N, P, nitrate and ammonium contents using standard procedures. Treatments with humin (T5 and T6) showed remarkable results on dry matter production; N, P, and K contents; their uptake; as well as their use efficiency by maize. The inclusion of humin might have loosened the soil and increased the soil porosity, hence the better growth of the plants. Humin plus inorganic fertilizer provided additional nutrients for the plants. The addition of inorganic fertilizer into compost is a combination of quick and slow release sources, which supplies N throughout the crop growth period. Common fertilization by surface application of T2 without any additives (acidic and high CEC materials) causes N and K to be easily lost. High Ca in the soil may have reacted with phosphate from fertilizer to form Ca phosphate, an insoluble compound of phosphate that is generally not available to plants, especially roots. Mixing soil with humin produced from composted SW before application of fertilizers (T5 and T6) significantly increased maize dry matter production and nutrient use efficiency. Additionally, this practice does not only improve N, P, and K use efficiency, but it also helps to reduce the use of N-, P-, and K-based fertilizers by 50%. Auldry Chaddy Petrus, Osumanu Haruna Ahmed, Ab Majid Nik Muhamad, Hassan Mohammad Nasir, and Make Jiwan Copyright © 2010 Auldry Chaddy Petrus et al. All rights reserved. Nitrogen Fertilizer Factory Effects on the Amino Acid and Nitrogen Content in the Needles of Scots Pine Mon, 01 Jan 1900 00:00:00 +0000 The aim of the research was to evaluate the content of amino acids in the needles of Pinus sylvestris growing in the area affected by a nitrogen fertilizer factory and to compare them with other parameters of needles, trees, and sites. Three young-age stands of Scots pine were selected at a distance of 0.5 km, 5 km, and 17 km from the factory. Examination of the current-year needles in winter of the year 2000 revealed significant (p Eugenija Kupsinskiene Copyright © 2001 Eugenija Kupsinskiene. All rights reserved. Effect of Lime, Humic Acid and Moisture Regime on the Availability of Zinc in Alfisol Mon, 01 Jan 1900 00:00:00 +0000 Lime and humic acid application can play an important role in the availability of zinc in paddy soils. We conducted laboratory incubation experiments on a rice growing soil (Alfisol) to determine the effect of lime, humic acid and different moisture regimes on the availability of Zn. Addition of half doses of liming material (powdered lime stone) recorded highest values of DTPA-Zn followed by no lime and 100% of lime requirement throughout the incubation period. With the progress of incubation, DTPA-Zn increased slightly during the first week and then decreased thereafter. The highest DTPA-extractable Zn content of 2.85 mg/kg was found in the treatment Zn10 L1/2 at 7 days of incubation, showing 17.3 % increase in DTPA-Zn content over its corresponding treatment of Zn alone (Zn10L0). The DTPA-Zn concentration increased with the application of humic acid compared with no humic acid throughout 35 days of the incubation period and the peak value obtained was 3.12 mg/kg in the treatment Zn10 HA2 at 14 days after incubation, showing 50 % increase in Zn content over its corresponding treatment of Zn alone (Zn10HA0). The application of 0.2% humic acid compared with 0.1% resulted in greater increase in DTPA-Zn concentration in soil application. During the 35 days of incubation, highest values of DTPA-Zn were recorded in soil maintained at saturated compared to water logged conditions. However, under alternate wetting and drying condition the DTPA-Zn content gradually decreased up to 21 days and thereafter increased slowly. Sushanta Kumar Naik and Dilip Kumar Das Copyright © 2007 Sushanta Kumar Naik and Dilip Kumar Das. All rights reserved. Effect of Winter Cover Crops on Soil Nitrogen Availability, Corn Yield, and Nitrate Leaching Mon, 01 Jan 1900 00:00:00 +0000 Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha-1, referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N0, N2, and N3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency’s drinking water standard of 10 mg N l�1 even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during the high N leaching period for vetch cover crop treatment and for the control without the cover crops. The correlation, however, failed for other cover crops largely because of variable effectiveness of the cover crops in reducing NO3 leaching during the 5 years of this study. Further research is needed to determine if relay cover crops planted into standing summer crops is a more appropriate approach than fall seeding in this region to gain sufficient growth of the cover crop by fall. Testing with other main crops that have earlier harvest dates than corn is also needed to further validate the effectiveness of the bicultures to increase soil N availability while protecting the water quality. S. Kuo, B. Huang, and R. Bembenek Copyright © 2001 S. Kuo et al. All rights reserved. Issues in System Boundary Definition for Substance Flow Analysis: The Case of Nitrogen Cycle Management in Catalonia Mon, 01 Jan 1900 00:00:00 +0000 The great complexity of the nitrogen cycle, including anthropogenic contributions, makes it necessary to carry out local studies, which allow us to identify the specific cause-effect links in a particular society. Models of local societies that are based on methods such as Substance Flow Analysis (SFA), which study and characterise the performance of metabolic exchanges between human society and the environment, are a useful tools for directing local policy towards sustainable management of the nitrogen cycle. In this paper, the selection of geographical boundaries for SFA application is discussed. Data availability and accuracy, and the possibility of linking the results with instructions for decision making, are critical aspects for proper scale selection. The experience obtained in the construction of the model for Catalonia is used to draw attention to the difficulties found in regional studies. Jordi Bartrola, Maria J. Martin, and Miquel Rigola Copyright © 2001 Jordi Bartrola et al. All rights reserved. Managing Ammonia Emissions from Dairy Cows by Amending Slurry with Alum or Zeolite or by Diet Modification Mon, 01 Jan 1900 00:00:00 +0000 Animal agriculture is a significant source of atmospheric ammonia. Ammonia (NH3) volatilization represents a loss of plant available N to the farmer and a potential contributor to eutrophication in low-nitrogen input ecosystems. This research evaluated on-farm slurry treatments of alum or zeolite and compared three diets for lactating dairy cows in their effectiveness to reduce NH3 emissions. NH3 emissions were compared using a group of mobile wind tunnels. The addition of 2.5% alum or 6.25% zeolite to barn-stored dairy slurry reduced NH3 volatilization by 60% and 55%, respectively, compared to untreated slurry. The alum conserved NH3 by acidifying the slurry to below pH 5, while the zeolite conserved ammonia by lowering the solution-phase nitrogen through cation exchange. The use of alum or zeolite also reduced soluble phosphorus in the slurry. NH3 loss from fresh manure collected from lactating dairy cows was not affected by three diets containing the same level of crude protein but differing in forage source (orchardgrass silage vs. alfalfa silage) or neutral detergent fiber (NDF) content (30% vs. 35% NDF). NH3 losses from the freshly excreted manures occurred very rapidly and included the urea component plus some unidentified labile organic nitrogen sources. NH3 conservation strategies for fresh manures will have to be active within the first few hours after excretion in order to be most effective. The use of alum or zeolites as an on-farm amendment to dairy slurry offers the potential for significantly reducing NH3 emissions. John J. Meisinger, Alan M. Lefcourt, Jo Ann S. Van Kessel, and Victor Wilkerson Copyright © 2001 John J. Meisinger et al. All rights reserved. Nitrogen Fertilizer Rate and Crop Management Effects on Nitrate Leaching from an Agricultural Field in Central Pennsylvania Mon, 01 Jan 1900 00:00:00 +0000 Eighteen pan lysimeters were installed at a depth of 1.2 m in a Hagerstown silt loam soil in a corn field in central Pennsylvania in 1988. In 1995, wick lysimeters were also installed at 1.2 m depth in the same access pits. Treatments have included N fertilizer rates, use of manure, crop rotation (continuous corn, corn-soybean, alfalfa-corn), and tillage (chisel plow-disk, no-till). The leachate data were used to evaluate a number of nitrate leaching models. Some of the highlights of the 11 years of results include the following: 1) growing corn without organic N inputs at the economic optimum N rate (EON) resulted in NO3–-N concentrations of 15 to 20 mg l-1 in leachate; 2) use of manure or previous alfalfa crop as partial source of N also resulted in 15 to 20 mg l-1 of NO3–-N in leachate below corn at EON; 3) NO3–-N concentration in leachate below alfalfa was approximately 4 mg l-1; 4) NO3–-N concentration in leachate below soybeans following corn was influenced by fertilizer N rate applied to corn; 5) the mass of NO3–-N leached below corn at the EON rate averaged 90 kg N ha-1 (approx. 40% of fertilizer N applied at EON); 6) wick lysimeters collected approximately 100% of leachate vs. 40–50% collected by pan lysimeters. Coefficients of variation of the collected leachate volumes for both lysimeter types were similar; 7) tillage did not markedly affect nitrate leaching losses; 8) tested leaching models could accurately predict leachate volumes and could be calibrated to match nitrate leaching losses in calibration years, but only one model (SOILN) accurately predicted nitrate leaching losses in the majority of validation treatment years. Apparent problems with tested models: there was difficulty estimating sizes of organic N pools and their transformation rates, and the models either did not include a macropore flow component or did not handle macropore flow well. Richard H. Fox, Yuanhong Zhu, John D. Toth, John M. Jemison Jr., and Jalal D. Jabro Copyright © 2001 Richard H. Fox et al. All rights reserved. Interaction of Arsenic with Zinc and Organics in a Rice (Oryza sativa L.)–Cultivated Field in India Mon, 01 Jan 1900 00:00:00 +0000 A laboratory experiment on an Inceptisol with pH 7.6, organic carbon 6.8 g kg–1, and 0.5 M NaHCO3 extractable arsenic 0.4 mg kg–1 was conducted to study the interaction effect of graded levels of arsenic (0, 5, and 10 mg kg–1) with zinc (0, 10, and 20 mg kg–1) and organics (0, 1, and 2% on soil weight basis) separately on the mobilization of arsenic in soils.The results show that the amount of 0.5 M NaHCO3 extractable arsenic at pH 8.5 increased with the progress of submergence up to 35 days. However, the increase in arsenic concentration was correlated with decreasing application of graded levels of Zn as zinc sulfate. The intensity of reduction varied with varying levels of Zn, being higher (0.73–2.72 mg kg–1) in the treatment where Zn was at 10 mg kg–1 and lower (0.70–1.08 mg kg–1) with Zn at 20 mg kg–1 application.The amount of arsenic content in the soil significantly decreased with the application of varying levels of organics. However, such depressive effect was found more pronounced with well-decomposed farm yard manure than that of vermicompost. The results of field experiments showed that the grain yield between continuous flooding (4.84 t ha–1) and intermittent flooding up to 40 days after transplanting then continuous flooding (4.83 t ha–1) with the application of ZnSO4 at 25 kg ha–1 did not vary. The lowest grain yield (3.65 t ha–1) was recorded in the treatment where intermittent flooding was maintained throughout the growth period without the application of Zn. The amount of arsenic content was, however, recorded much lower in the treatment where intermittent flooding throughout the growth period was maintained with ZnSO4. Dilip Kumar Das, T. K. Garai, S. Sarkar, and Pintu Sur Copyright © 2005 Dilip Kumar Das et al. All rights reserved. Long-Term Response of Groundwater Nitrate Concentrations to Management Regulations in Nebraska's Central Platte Valley Mon, 01 Jan 1900 00:00:00 +0000 The impact of 16 years (1988–2003) of management practices on high groundwater nitrate concentrations in Nebraska's central Platte River valley was assessed in a 58,812-ha (145,215-ac) groundwater quality management area intensively cropped to irrigated corn (Zea mays L.). Crop production and groundwater nitrate data were obtained from ~23,800 producer reports. The terrace, comprising ~56% of the study area, is much more intensively cropped to irrigated corn than the bottomland. From 1987 to 2003, average groundwater nitrate concentrations in the primary aquifer beneath the bottomland remained static at ~8 mg N/l. During the same period, average groundwater nitrate concentrations in the primary aquifer beneath the terrace decreased from 26.4 to 22.0 mg N/l at a slow, but significant (p < 0.0001), rate of 0.26 mg N/l/year. Approximately 20% of the decrease in nitrate concentrations can be attributed to increases in the amount of N removed from fields as a consequence of small annual increases in yield. During the study, producers converted ~15% of the ~28,300 furrow-irrigated terrace hectares (~69,800 ac) to sprinkler irrigation. The conversion is associated with about an additional 50% of the decline in the nitrate concentration, and demonstrates the importance of both improved water and N management. Average N fertilizer application rates on the terrace were essentially unchanged during the study. The data indicate that groundwater nitrate concentrations have responded to improved management practices instituted by the Central Platte Natural Resources District. Mary E. Exner, Hugo Perea-Estrada, and Roy F. Spalding Copyright © 2010 Mary E. Exner et al. All rights reserved. Management of Nitrogen Through the Use of Leaf Color Chart (LCC) and Soil Plant Analysis Development (SPAD) or Chlorophyll Meter in Rice Under Irrigated Ecosystem Mon, 01 Jan 1900 00:00:00 +0000 A field experiment was conducted in a farmer’s field in the district of Nadia, West Bengal, India to study the management of N through leaf color chart (LCC) and soil plant analysis development (SPAD) or chlorophyll meter in rice (cv. IET-4094) during the Kharif (wet season) of 2001–2002 and 2002–2003 by taking the treatment combinations based on different levels of N at fixed schedule and through LCC and SPAD. The experimental soil (0–15 cm) had pH 7.33; organic C 0.43%; available N 408.70 kg ha−1; available P 6.92 kg ha−1; and available K 66.31 kg ha−1. The results of LCC and SPAD or chlorophyll meter for the N management in rice show that values of both LCC and SPAD significantly increased with an increasing level of N. The mean values of LCC and SPAD varied from 3.19–5.31 and 27.36–39.26, respectively, in rice. The results show that the amount of N can be saved as 20–42.5 and 27.5–47.5 kg N ha−1 through the use of LCC and SPAD in rice over the fixed-timing N treatment T7 where 150 kg N ha−1 was applied in three (3) splits without reduction in the yield. The SPAD- and LCC-treated N plot showed higher N-use efficiency over fixed-scheduling N treatment in rice. The results further show that SPAD value of 37 and LCC value of 5 have been proved to be superior treatments over SPAD (35) and LCC (4) for the best management of N in rice in an Inceptisol. Debtanu Maiti, D. K. Das, Tanmoy Karak, and Mahua Banerjee Copyright © 2004 Debtanu Maiti et al. All rights reserved. Agricultural Management Practices to Sustain Crop Yields and Improve Soil and Environmental Qualities Mon, 01 Jan 1900 00:00:00 +0000 In the past several decades, agricultural management practices consisting of intensive tillage and high rate of fertilization to improve crop yields have resulted in the degradation of soil and environmental qualities by increasing erosion and nutrient leaching in the groundwater and releasing greenhouses gases, such as carbon dioxide (CO2) and nitrous oxide (N2O), that cause global warming in the atmosphere by oxidation of soil organic matter. Consequently, management practices that sustain crop yields and improve soil and environmental qualities are needed. This paper reviews the findings of the effects of tillage practices, cover crops, and nitrogen (N) fertilization rates on crop yields, soil organic carbon (C) and N concentrations, and nitrate (NO3)-N leaching from the soil. Studies indicate that conservation tillage, such as no-till or reduced till, can increase soil organic C and N concentrations at 0- to 20-cm depth by as much as 7–17% in 8 years compared with conventional tillage without significantly altering crop yields. Similarly, cover cropping and 80–180 kg N ha–1 year–1 fertilization can increase soil organic C and N concentrations by as much as 4–12% compared with no cover cropping or N fertilization by increasing plant biomass and amount of C and N inputs to the soil. Reduced till, cover cropping, and decreased rate of N fertilization can reduce soil N leaching compared with conventional till, no cover cropping, and full rate of N fertilization. Management practices consisting of combinations of conservation tillage, mixture of legume and nonlegume cover crops, and reduced rate of N fertilization have the potentials for sustaining crop yields, increasing soil C and N storage, and reducing soil N leaching, thereby helping to improve soil and water qualities. Economical and social analyses of such practices are needed to find whether they are cost effective and acceptable to the farmers. Upendra M. Sainju, Wayne F. Whitehead, and Bharat P. Singh Copyright © 2003 Upendra M. Sainju et al. All rights reserved. Enhancing the Urea-N Use Efficiency in Maize (Zea mays) Cultivation on Acid Soils Amended with Zeolite and TSP Mon, 01 Jan 1900 00:00:00 +0000 Ammonia loss significantly reduces the urea-N use efficiency in crop production. Efforts to reduce this problem are mostly laboratory oriented. This paper reports the effects of urea amended with triple superphosphate (TSP) and zeolite (Clinoptilolite) on soil pH, nitrate, exchangeable ammonium, dry matter production, N uptake, fresh cob production, and urea-N uptake efficiency in maize (Zea mays) cultivation on an acid soil in actual field conditions. Urea-amended TSP and zeolite treatments and urea only (urea without additives) did not have long-term effect on soil pH and accumulation of soil exchangeable ammonium and nitrate. Treatments with higher amounts of TSP and zeolite significantly increased the dry matter (stem and leaf) production of Swan (test crop). All the treatments had no significant effect on urea-N concentration in the leaf and stem of the test crop. In terms of urea-N uptake in the leaf and stem tissues of Swan, only the treatment with the highest amount of TSP and zeolite significantly increased urea-N uptake in the leaf of the test crop. Irrespective of treatment, fresh cob production was statistically not different. However, all the treatments with additives improved urea-N uptake efficiency compared to urea without additives or amendment. This suggests that urea amended with TSP and zeolite has a potential of reducing ammonia loss from surface-applied urea. Osumanu H. Ahmed, Aminuddin Hussin, Husni M. H. Ahmad, Anuar A. Rahim, and Nik Muhamad Abd. Majid Copyright © 2008 Osumanu H. Ahmed et al. All rights reserved. Qualitative Assessment of Soil Carbon in a Rehabilitated Forest Using Fourier Transform Infrared Spectroscopy Mon, 01 Jan 1900 00:00:00 +0000 Logging and poor shifting cultivation negatively affect initial soil carbon (C) storage, especially at the initial stage of deforestation, as these practices lead to global warming. As a result, an afforestation program is needed to mitigate this problem. This study assessed initial soil C buildup of rehabilitated forests using Fourier transform infrared (FTIR) spectroscopy. The relatively high E4/E6 values of humic acids (HAs) in the rehabilitated forest indicate prominence of aliphatic components, suggesting that the HAs were of low molecular weight. The total acidity, carboxylic (-COOH) and phenolic (-OH) of the rehabilitated forest were found to be consistent with the ranges reported by other researchers. The spectra of all locations were similar because there was no significant difference in the quantities of C in humic acids (CHA) regardless of forest age and soil depth. The spectra showed distinct absorbance at 3290, 1720, 1630, 1510, 1460, 1380, and 1270 cm-1. Increase of band at 1630 and 1510 cm-1 from 0–20 to 40–60 cm were observed, suggesting C buildup from the lowest depths 20–40 and 40–60 cm. However, the CHA content in the soil depths was not different. The band at 1630 cm-1 was assigned to carboxylic and aromatic groups. Increase in peak intensity at 1510 cm-1 was because C/N ratio increased with increasing soil depth. This indicates that decomposition rate decreased with increasing soil depth and decreased with CHA. The finding suggests that FTIR spectroscopy enables the assessment of C composition functional group buildup at different depths and ages. Huck-Ywih Ch'ng, Osumanu Haruna Ahmed, and Nik Muhamad Ab. Majid Copyright © 2011 Huck-Ywih Ch'ng et al. All rights reserved. Comparison of Soil Phosphorus Tests for Assessing Plant Availability of Phosphorus in an Ultisol Amended with Water-Soluble and Phosphate Rock Sources Mon, 01 Jan 1900 00:00:00 +0000 The effectiveness of different soil tests in assessing soil phosphorus (P) in soils amended with phosphate rocks (PRs) is uncertain. We evaluated the effects of triple superphosphate (TSP) and PRs on extractable P by conventional soil tests (Mehlich 3 [Meh3] and Bray-1 [B1]) and a nonconventional test (iron oxide–impregnated paper, strip). Extracted amounts of P were in the order: Meh3 >B1 > strip. All the tests were significantly correlated (p = 0.001). Acidic reagents extracted more P from TSP than PRs, while the strip removed equal amounts from the two sources. The P removed by the three tests was related significantly to dry matter yield (DMY), but only in the first harvest, except for B1. Established critical P levels (CPLs) differed for TSP and PRs. In PR-fertilized soils, CPLs were 27, 17, and 12 mg P kg-1soil for Meh3, B1, and strip, respectively, and 42, 31, and 12 mg P kg-1 soil, respectively, in TSP-fertilized soils. Thus, the strip resulted in a common CPL for TSP and PRs (12 mg P kg-1 soil). This method can be used effectively in soils where integrated nutrient sources have been used, but there is need to establish CPLs for different crops. For cost-effective fertilizer P recommendations based on conventional soil tests, there is a need to conduct separate calibrations for TSP- and PR-fertilized soils. E. W. Gikonyo, A. R. Zaharah, M. M. Hanafi, and A. R. Anuar Copyright © 2010 E. W. Gikonyo et al. All rights reserved. Relative Yield Loss Calculations in Wheat (Triticum durum Desf. cv. Camacho) due to Ozone Exposure Mon, 01 Jan 1900 00:00:00 +0000 In this work, an estimation of the relative yield losses of wheat due to ozone exposure is made by means of two approaches proposed by the CLRTAP (Convention on Long Range Transboundary Air Pollution): the exposure-response approach, which deals with the exposure of plants to ozone during a certain time, and the accumulated uptake approach, which, besides ozone exposure, deals with the velocity of absorption of the contaminant and the environmental factors that modulate that absorption. Once the relative yield losses are calculated by means of the two approaches, the aim is to establish which index (the exposure-response index or the accumulated uptake index) best characterizes the response of wheat plants to ozone. The relative yield losses are compared considering two watering regimes: well watered and nonwatered. The results obtained show that the relative yield losses in wheat due to ozone exposure are much more strongly linked to the real quantity of ozone absorbed by plants than to the environmental ozone exposure, which means that the accumulated uptake approach is much more realistic than the exposure-response approach. Relative yield loss estimations were higher in a crop with no watering; 3% of relative yield losses more than a crop watered until field capacity. Daniel de la Torre Copyright © 2010 Daniel de la Torre. All rights reserved. Nitrogen Management in a Maize-Groundnut Crop Rotation of Humid Tropics: Effect on N2O Emission Mon, 01 Jan 1900 00:00:00 +0000 Development of appropriate land management techniques to attain sustainability and increase the N use efficiency of crops in the tropics has been gaining momentum. The nitrous oxides (N2Os) affect global climate change and its contribution from N and C management systems is of great significance. Thus, N transformations and N2O emission during maize-groundnut crop rotation managed with various N sources were studied. Accumulation of nitrate (NO3 –) and its disappearance happened immediately after addition of various N sources, showing liming effect. The mineral N retained for 2–4 weeks depending on the type and amount of N application. The chicken manure showed rapid nitrification in the first week after application during the fallow period, leading to a maximum N2O flux of 9889 μg N2O-N m–2 day– 1. The same plots showed a residual effect by emitting the highest N2O (4053 μg N2O-N m–2 day– 1) during maize cultivation supplied with a halfrate of N fertilizer. Application of N fertilizer only or in combination with crop residues exhibited either lowered fluxes or caused a sink during the groundnut and fallow periods due to small availability of substrates and/or low water-filled pore space (<40%). The annual N2O emission ranged from 1.41 to 3.94 kg N2O-N ha–1; the highest was estimated from the chicken manure plus crop residues and half-rate of inorganic N-amended plots. Results indicates a greater influence of chicken manure on the N transformations and thereby N2O emission. M.I. Khalil, A.B. Rosenani, O. Van Cleemput, C.I. Fauziah, and J. Shamshuddin Copyright © 2001 M.I. Khalil et al. All rights reserved. Nitrogen in the Environment: Sources, Problems, and Management Mon, 01 Jan 1900 00:00:00 +0000 Nitrogen (N) is applied worldwide to produce food. It is in the atmosphere, soil, and water and is essential to all life. N for agriculture includes fertilizer, biologically fixed, manure, recycled crop residue, and soil-mineralized N. Presently, fertilizer N is a major source of N, and animal manure N is inefficiently used. Potential environmental impacts of N excreted by humans are increasing rapidly with increasing world populations. Where needed, N must be efficiently used because N can be transported immense distances and transformed into soluble and/or gaseous forms that pollute water resources and cause greenhouse effects. Unfortunately, increased amounts of gaseous N enter the environment as N2O to cause greenhouse warming and as NH3 to shift ecological balances of natural ecosystems. Large amounts of N are displaced with eroding sediments in surface waters. Soluble N in runoff or leachate water enters streams, rivers, and groundwater. High-nitrate drinking water can cause methemoglobinemia, while nitrosamines are associated with various human cancers. We describe the benefits, but also how N in the wrong form or place results in harmful effects on humans and animals, as well as to ecological and environmental systems. R.F. Follett and J.L. Hatfield Copyright © 2001 R.F. Follett and J.L. Hatfield. All rights reserved. The Use of Plants for Remediation of Metal-Contaminated Soils Mon, 01 Jan 1900 00:00:00 +0000 The use of green plants to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) is an emerging technology. In this paper, an overview is given of existing information concerning the use of plants for the remediation of metal-contaminated soils. Both site decontamination (phytoextraction) and stabilization techniques (phytostabilization) are described. In addition to the plant itself, the use of soil amendments for mobilization (in case of phytoextraction) and immobilization (in case of phytostabilization) is discussed. Also, the economical impacts of changed land-use, eventual valorization of biomass, and cost-benefit aspects of phytoremediation are treated. In spite of the growing public and commercial interest and success, more fundamental research is needed still to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between metals, soil, plant roots, and micro-organisms (bacteria and mycorrhiza) in the rhizosphere. Further, more demonstration experiments are needed to measure the underlying economics, for publicacceptance and last but not least, to convince policy makers. Andon Vassilev, Jean-Paul Schwitzguebél, Theo Thewys, Daniël van der Lelie, and Jaco Vangronsveld Copyright © 2004 Andon Vassilev et al. All rights reserved. Pig Manure Application for Remediation of Mine Soils in Murcia Province, SE Spain Mon, 01 Jan 1900 00:00:00 +0000 In southern Spain, specifically in Murcia Province, an increased pig population causes large amounts of slurry production that creates a very serious environmental concern. Our aim was to use this waste to reduce the acid mine drainage process, heavy metal mobilization, and to improve soil conditions to enhance plant establishment in mine soils. Pig manure, sewage sludge, and lime were used as soil amendments in a field experiment and in undisturbed soil column. Field experiments showed an increase in pH, total nitrogen, organic carbon, and carbonate contents; a reduction of diethylene-tetramine pentaacetic acid (DTPA)– and water-extractable metals; and an improvement of plant establishment. The field studies showed that pig manure could be utilized to remediate polluted soils. Column studies in the laboratory showed that amendment of mine soil with pig manure initially increased soil pH from 2.21 to 6.34, promoted reduced conditions in the surface soil, and decreased the metal mobility. After 21 weeks, while the leachate was slightly acidic, however, the mobility of metals was substantially low. Additions of 7 and 14% of pig manure were insufficient to maintain a neutral pH in the leachate. Therefore, continuous application of the pig manure may be advised. A. Faz, D. M. Carmona, A. Zanuzzi, and A. R. Mermut Copyright © 2008 A. Faz et al. All rights reserved. Quantification, Sources, and Control of Ammonia Emissions in the Czech Republic Mon, 01 Jan 1900 00:00:00 +0000 The exact quantification of ammonia (NH3) emissions is the basic presumption for the fulfilment of obligations set by the CLRTAP (Convention on Long Range Transboundary Air Pollution) Protocol which was signed by the Czech Republic in 1999. Most NH3 emissions in the Czech Republic are produced during the breeding of cattle, pigs, and poultry; therefore, determinating emission factors for these kinds of animals by studying their total number, type of breeding, and subsequent disposal of manure is the solution to the problem of NH3 emissions quantification. This paper summarizes the results of 4 years of research in this area, determining the emission factors and ways of decreasing emissions from the breeding of cattle, pigs, and poultry. Marie Skybova Copyright © 2001 Marie Skybova. All rights reserved. Using Milk Urea Nitrogen to Evaluate Diet Formulation and Environmental Impact on Dairy Farms Mon, 01 Jan 1900 00:00:00 +0000 Reducing nitrogen (N) excretion by dairy cattle is the most effective means to reduce N losses (runoff, volatilization, and leaching) from dairy farms. The objectives of this review are to examine the use of milk urea nitrogen (MUN) to measure N excretion and utilization efficiency in lactating dairy cows and to examine impacts of overfeeding N to dairy cows in the Chesapeake Bay drainage basin. A mathematical model was developed and evaluated with an independent literature data set to integrate MUN and milk composition to predict urinary and fecal excretion, intake, and utilization efficiency for N in lactating dairy cows. This model was subsequently used to develop target MUN concentrations for lactating dairy cattle fed according to National Research Council (NRC) recommendations. Target values calculated in this manner were 8 to 14 mg/dl for a typical lactation and were most sensitive to change in milk production and crude protein intake. Routine use of MUN to monitor dairy cattle diets was introduced to dairy farms (n = 1156) in the Chesapeake Bay watershed. Participating farmers (n = 454) were provided with the results of their MUN analyses and interpretive information monthly for a period of 6 months. The average MUN across all farms in the study increased in the spring, but the increase was 0.52 mg/dl lower for farmers receiving MUN results compared to those who did not participate in the program. This change indicated that participating farmers reduced N feeding compared to nonparticipants. Average efficiency of feed N utilization (N in milk / N in feed x 100) was 24.5% (SD = 4.5). On average, farmers fed 6.6% more N than recommended by the NRC, resulting in a 16% increase in urinary N and a 2.7% increase in fecal N compared to feeding to requirement. N loading to the Chesapeake Bay from overfeeding protein to lactating dairy cattle was estimated to be 7.6 million kg/year. MUN is a useful tool to measure diet adequacy and environmental impact from dairy farms. J.S. Jonker and R.A. Kohn Copyright © 2001 J.S. Jonker and R.A. Kohn. All rights reserved. Nitrogen Interactions with Phosphorus and Potassium for Optimum Crop Yield, Nitrogen Use Effectiveness, and Environmental Stewardship Mon, 01 Jan 1900 00:00:00 +0000 The development of best management practices (BMPs) for optimum nitrogen (N) use by crops contributes to farm profitability, increased food and fiber production, and best stewardship of the environment and its resources. Such BMPs are both site- and crop-specific. Optimum N use by plants is influenced not only by climate and certain soil characteristics, but also by management practices such as tillage, time and method of N application, or positive interactions with nutrients and supporting cropping practices. Phosphorus (P) and potassium (K) are two of the nutrients essential for effective use of N by plants. Nitrogen interactions with P and/or K help to improve root system development, dry matter production, and other plant functions regulating crop yield and quality. Noble R. Usherwood and William I. Segars Copyright © 2001 Noble R. Usherwood and William I. Segars. All rights reserved. Nitrogen Use and Carbon Sequestered by Corn Rotations in the Northern Corn Belt, U.S. Mon, 01 Jan 1900 00:00:00 +0000 Diversified crop rotation may improve production efficiency, reduce fertilizer nitrogen (N) requirements for corn (Zea mays L.), and increase soil carbon (C) storage. Objectives were to determine effect of rotation and fertilizer N on soil C sequestration and N use. An experiment was started in 1990 on a Barnes clay loam (U.S. soil taxonomy: fine-loamy, mixed, superactive, frigid Calcic Hapludoll) near Brookings, SD. Tillage systems for corn–soybean (Glycine max [L.] Merr.) rotations were conventional tillage (CS) and ridge tillage (CSr). Rotations under conventional tillage were continuous corn (CC), and a 4-year rotation of corn–soybean–wheat (Triticum aestivum L.) companion-seeded with alfalfa (Medicago sativa L.)–alfalfa hay (CSWA). Additional treatments included plots of perennial warm season, cool season, and mixtures of warm and cool season grasses. N treatments for corn were corn fertilized for a grain yield of 8.5 Mg ha–1 (highN), of 5.3 Mg ha–1 (midN), and with no N fertilizer (noN). Total (1990–2000) corn grain yield was not different among rotations at 80.8 Mg ha–1 under highN. Corn yield differences among rotations increased with decreased fertilizer N. Total (1990–2000) corn yields with noN fertilizer were 69 Mg ha–1 under CSWA, 53 Mg ha–1 under CS, and 35 Mg ha–1 under CC. Total N attributed to rotations (noN treatments) was 0.68 Mg ha–1 under CSWA, 0.61 Mg ha–1 under CS, and 0.28 Mg ha–1 under CC. Plant carbon return depended on rotation and N. In the past 10 years, total C returned from above- ground biomass was 29.8 Mg ha–1 under CC with highN, and 12.8 Mg ha–1 under CSWA with noN. Soil C in the top 15 cm significantly increased (0.7 g kg–1) with perennial grass cover, remained unchanged under CSr, and decreased (1.7 g kg–1) under CC, CS, and CSWA. C to N ratio significantly narrowed (–0.75) with CSWA and widened (0.72) under grass. Diversified rotations have potential to increase N use efficiency and reduce fertilizer N input for corn. However, within a corn production system using conventional tillage and producing (averaged across rotation and N treatment) about 6.2-Mg ha–1 corn grain per year, we found no gain in soil C after 10 years regardless of rotation. Joseph L. Pikul, Thomas E. Schumacher, and Merle Vigil Copyright © 2001 Joseph L. Pikul et al. All rights reserved. Effects of Furrow Irrigation on the Growth, Production, and Water Use Efficiency of Direct Sowing Rice Mon, 01 Jan 1900 00:00:00 +0000 Rice farming is the major crop production in Asia and is predicted to increase significantly in the near future in order to meet the demands for the increasing human population. Traditional irrigation methods used in rice farming often result in great water loss. New water-saving methods are urgently needed to reduce water consumption. Three field and pot experiments were conducted to evaluate the furrow irrigation (FI) system to improve water use efficiency (WUE) and production of direct sowing rice in southern China. Compared to the conventional irrigation (CI) system (continuous flooding irrigation), for every square hectometer of rice field, the FI system reduced water use by 3130 m3, or 48.1%, and increased grain production by 13.9% for an early cultivar. For a late cultivar, the FI system reduced water use by 2655 m3, or 40.6%, and an increase of grain production by 12.1%. The improved WUE in the FI system is attributed to (1) a significant reduction of irrigation rate, seepage, evaporation, and evapotranspiration; (2) a significant reduction in the reduced materials, such as ferrous ion (Fe2+), and therefore an increase in the vitality of the root system, evident by the increases in the number of white roots by 32.62%, and decreases in the number of black roots by 20.04% and yellow roots by 12.58%; the use of the FI system may also reduce humidity of the rice field and enhance gas transport in the soil and light penetration, which led to reduced rice diseases and increased leaf vitality; and (3) increases in tiller and effective spikes by 11.53% and the weight per thousand grains by 1.0 g. These findings suggest that the shallow FI system is a promising means for rice farming in areas with increasing water shortages. Chunlin He Copyright © 2010 Chunlin He. All rights reserved. Optimization of Aquatic-Terrestrial Ecosystem in Relation to Soil Nitrogen Status for the Cultivation of Fish and Aquatic Food Crops of the Indian Subtropics Mon, 01 Jan 1900 00:00:00 +0000 A case study was undertaken during wet and postwet seasons to improve the perennial and alternate submerged saucer-shaped ponded lands (tal and semi-tal lands) in the coasts and northeastern plains of the Indian subtropics through pisciculture and cultivation of starch- and protein-rich aquatic food crops like water chestnut (Trapa bispinosa Roxb.) and makhana or fox nut (Euryale ferox Salisb.). The study revealed that the physico-chemical properties of soils (pH, organic C, organic matter, available N, P, and K) as well as quality of water (pH, EC, BOD, COD, CO3+, HCO3�, NO3-N, SO4-S, and Cl�), growing fish, makhana, and water chestnut was remarkably influenced by different moisture regimes and exhibited a significant improvement of soil health. The amount of organic C, available N, P, and K content were found significantly highest in the treatment where makhana was grown under alternate flooding and drying situation with a depth >2 m as compared to other treatments. Such enrichment of soil fertility, particularly in available N and P content, might be due to the accumulation of considerable amounts of biomass and fish excreta and their subsequent decomposition in situ in the soils. Therefore, the present study suggests that the N-enriched soil may effectively be utilized further for growing subsequent arable crops surroundings during summer season, which not only saves the amount of applied N fertilizer but also increases the apparent N efficiency with simultaneous increase in yield, and would benefit the farmers in this region. A.M. Puste and D.K. Das Copyright © 2001 A.M. Puste and D.K. Das. All rights reserved. Homeopathic Preparations to Control the Rosy Apple Aphid (Dysaphis plantaginea Pass.) Mon, 01 Jan 1900 00:00:00 +0000 A laboratory model system with the rosy apple aphid (Dysaphis plantaginea Pass.) on apple seedlings was developed to study the effects of homeopathic preparations on this apple pest. The assessment included the substance Lycopodium clavatum and a nosode of the rosy apple aphid. Each preparation was applied on the substrate surface as aqueous solution of granules (6c, 15c, or 30c). Controls were aqueous solutions of placebo granules or pure water. In eight independent, randomized, and blinded experiments under standardized conditions in growth chambers, the development of aphids on treated and untreated apple seedlings was observed over 17 days, each. Six experiments were determined to assess the effects of a strict therapeutic treatment; two experiments were designed to determine the effects of a combined preventative and therapeutic treatment. After application of the preparations, the number of juvenile offspring and the damage on apple seedlings were assessed after 7 and 17 days, respectively. In addition, after 17 days, the seedling weight was measured. In the final evaluation of the six strictly therapeutic trials after 17 days, the number of juvenile offspring was reduced after application of L. clavatum 15c (-17%, p = 0.002) and nosode 6c (-14%, p = 0.02) compared to the pure water control. No significant effects were observed for leaf damage or fresh weight for any application. In the two experiments with combined preventative and therapeutic treatment, no significant effects were observed in any measured parameter. Homeopathic remedies may be effective in plant-pest systems. The magnitude of observed effects seems to be larger than in models with healthy plants, which renders plant-pest systems promising candidates for homeopathic basic research. For successful application in agriculture, however, the effect is not yet sufficient. This calls for further optimization concerning homeopathic remedy selection, potency level, dosage, and application routes. Eric Wyss, Lucius Tamm, Joachim Siebenwirth, and Stephan Baumgartner Copyright © 2010 Eric Wyss et al. All rights reserved. High Oxygen Level in a Soaking Treatment Improves Early Root and Shoot Development of Black Willow Cuttings Mon, 01 Jan 1900 00:00:00 +0000 Black willow (Salix nigra) stem cuttings are commonly used to stabilize eroded streambanks with survival dependent on rapid development of adventitious roots to maintain plant water balance, absorb nutrients, and provide anchorage and support especially during flood and drought events. Soaking cuttings in water prior to planting increases survival and growth rates, but it is not known whether oxygen content in the soaking water affects the rate of early root and shoot initiation and growth. A laboratory experiment tested the hypothesis that cuttings treated with high oxygen (>95% saturation, 8.62 mg O2 l–-1) soaking exhibit more rapid initiation and growth of roots and shoots than cuttings treated with low oxygen (<15% saturation, 1.24 mg O2 l-1) soaking and control (unsoaked). Root initiation was enhanced in both high and low O2 soaking treatments compared to control (100, 93, and 41%, respectively, n = 27). High O2 soaking led to greater root length than low O2 soaking during the fourth week after planting (26.5 and 12.3 cm on day 22; 27.7 and 19.1 cm on day 27, respectively). Shoot growth was greater in high O2 compared to low O2 soaking on days 36 and 56 after planting (9.3 and 6.3 cm on day 36, 10.7 and 7.2 cm on day 56, respectively). Shoot and root biomass production was stimulated in both soaking treatments, with 200% more biomass production by day 59 compared to control. Results of this study demonstrated that a high oxygen soaking treatment has potential for improving early root and shoot growth, and survival in willow cuttings planted at riparian restoration sites. L.T. Martin, S.R. Pezeshki, and F.D. Shields Jr. Copyright © 2004 L.T. Martin et al. All rights reserved. Lead, Cadmium, Zinc, and Copper Bioavailability in the Soil-Plant-Animal System in a Polluted Area Mon, 01 Jan 1900 00:00:00 +0000 A comparative research study on the bioavailability of Pb, Cd, Zn, and Cu in the soil-plant-animal-system was carried out. The connection between the total quantity and the mobile forms of Pb, Cd, Zn, and Cu in soils with different levels of contamination; the transition of these metals into rapeseed; and their assimilation by rabbits fed with a food that consisted mainly of rapeseed was studied. It was established that the absorption of heavy metals by the rapeseed definitely has a selective character, as the affinity towards Zn is most strongly expressed. The accumulation of Pb, Cd, Zn, and Cu in the organs of the rapeseed occurs in the following order: inflorescences > leaves > stems. A direct connection between the quantity of the mobile forms and their accumulation in the plants was not found. The environmental contamination has a significant effect on heavy metal levels and distribution, as the largest quantity of all four elements is accumulated in the kidneys and liver. A well-expressed impact of the level of Cd contamination on the absorption of essential trace metals (Zn and Cu) and their accumulation into some of the organs of the animals was found. Violina R. Angelova, Radka V. Ivanova, Jivko M. Todorov, and Krasimir I. Ivanov Copyright © 2010 Violina R. Angelova et al. All rights reserved. Comparison of Several Models for Calculating Ozone Stomatal Fluxes on a Mediterranean Wheat Cultivar (Triticum durum Desf. cv. Camacho) Mon, 01 Jan 1900 00:00:00 +0000 Ozone stomatal fluxes were modeled for a 3-year period following different approaches for a commercial variety of durum wheat (Triticum durum Desf. cv. Camacho) at the phenological stage of anthesis. All models performed in the same range, although not all of them afforded equally significant results. Nevertheless, all of them suggest that stomatal conductance would account for the main percentage of ozone deposition fluxes. A new modeling approach was tested, based on a 3-D architectural model of the wheat canopy, and fairly accurate results were obtained. Plant species-specific measurements, as well as measurements of stomatal conductance and environmental parameters, were required. The method proposed for calculating ozone stomatal fluxes (FO3_3-D) from experimental gs data and modeling them as a function of certain environmental parameters in conjunction with the use of the YPLANT model seems to be adequate, providing realistic estimates of the canopy FO3_3-D, integrating and not neglecting the contribution of the lower leaves with respect to the flag leaf, although a further development of this model is needed. Daniel de la Torre Llorente Copyright © 2007 Daniel de la Torre Llorente. All rights reserved. Accumulation of Soil Carbon and Phosphorus Contents of a Rehabilitated Forest Mon, 01 Jan 1900 00:00:00 +0000 The world's tropical rainforests are decreasing at an alarming rate as they are converted to agricultural land, pasture, and plantations. Decreasing tropical forests affect global warming. As a result, afforestation progams have been suggested to mitigate this problem. The objective of this study was to determine the carbon and phosphorus accumulation of a rehabilitated forest of different ages. The size of the study area was 47.5 ha. Soil samples were collected from the 0-, 6-, 12-, and 17-year-old rehabilitated forest. Twenty samples were taken randomly with a soil auger at depths of 0–20 and 20–40 cm. The procedures outlined in the Materials and Methods section were used to analyze the soil samples for pH, total C, organic matter, total P, C/P ratio, yield of humic acid (HA), and cation exchange capacity (CEC). The soil pH decreased significantly with increasing age of forest rehabilitation regardless of depth. Age did not affect CEC of the rehabilitated forest. Soil organic matter (SOM), total C, and total P contents increased with age. However, C/P ratio decreased with time at 0–20 cm. Accumulation of HA with time and soil depth was not consistent. The rehabilitated forest has shown signs of being a C and P sink. Osumanu Haruna Ahmed, Nur Aainaa Hasbullah, and Nik Muhamad Ab Majid Copyright © 2010 Osumanu Haruna Ahmed et al. All rights reserved. Limitations of Improved Nitrogen Management to Reduce Nitrate Leaching and Increase Use Efficiency Mon, 01 Jan 1900 00:00:00 +0000 The primary mode of nitrogen (N) loss from tile-drained row-cropped land is generally nitrate-nitrogen (NO3-N) leaching. Although cropping, tillage, and N management practices can be altered to reduce the amount of leaching, there are limits as to how much can be done. Data are given to illustrate the potential reductions for individual practices such as rate, method, and timing of N applications. However, most effects are multiplicative and not additive; thus it is probably not realistic to hope to get overall reductions greater than 25 to 30% with in-field practices alone. If this level of reduction is insufficient to meet water quality goals, additional off-site landscape modifications may be necessary. James L. Baker Copyright © 2001 James L. Baker. All rights reserved. Economic Analysis as a Basis for Large-Scale Nitrogen Control Decisions: Reducing Nitrogen Loads to the Gulf of Mexico Mon, 01 Jan 1900 00:00:00 +0000 Economic analysis can be a guide to determining the level of actions taken to reduce nitrogen (N) losses and reduce environmental risk in a cost-effective manner while also allowing consideration of relative costs of controls to various groups. The biophysical science of N control, especially from nonpoint sources such as agriculture, is not certain. Widespread precise data do not exist for a river basin (or often even for a watershed) that couples management practices and other actions to reduce nonpoint N losses with specific delivery from the basin. The causal relationships are clouded by other factors influencing N flows, such as weather, temperature, and soil characteristics. Even when the science is certain, economic analysis has its own sets of uncertainties and simplifying economic assumptions. The economic analysis of the National Hypoxia Assessment provides an example of economic analysis based on less than complete scientific information that can still provide guidance to policy makers about the economic consequences of alternative approaches. One critical value to policy makers comes from bounding the economic magnitude of the consequences of alternative actions. Another value is the identification of impacts outside the sphere of initial concerns. Such analysis can successfully assess relative impacts of different degrees of control of N losses within the basin as well as outside the basin. It can demonstrate the extent to which costs of control of any one action increase with the intensity of application of control. Otto C. Doering, Marc Ribaudo, Fransisco Diaz-Hermelo, Ralph Heimlich, Fred Hitzhusen, Crystal Howard, Richard Kazmierczak, John Lee, Larry Libby, Walter Milon, Mark Peters, and Anthony Prato Copyright © 2001 Otto C. Doering et al. All rights reserved. Nitrogen and Sulphur Relations in Effecting Yield and Quality of Cereals and Oilseed Crops Mon, 01 Jan 1900 00:00:00 +0000 Nitrogen and sulphur, both vital structural elements, are especially needed for the synthesis of proteins and oils. Investigations revealed the required application of sulphur is one half to one third the amount of nitrogen, and the ratio becomes narrower in mustard (Brassica juncea L.), followed by wheat and rice. The efficiency of an increased level of nitrogen required a proportionately higher amount of sulphur. A critical investigation on the effective utilization of applied vis-à-vis absorbed nitrogen in wheat and mustard envisaged accumulation of NO3-N in vegetative parts when sulphur remained proportionately low. Application of sulphur hastened the chemical reduction of absorbed NO3– for its effective utilization. The effect was more pronounced in mustard than in wheat. Easily available forms of sulphur, like ammonium sulphate and gypsum, as compared to pyrite or elemental sulphur, maintained adequate N to S ratio in rice, resulting in a reduction in the percent of unfilled grain, a major consideration in rice yield. A narrow N to S ratio, with both at higher levels, increased the oil content but raised the saponification value of the oil, a measure of free fatty acids. Whereas, a proportionately narrow N to S ratio at moderate dose resulted in adequately higher seed and oil yield with relatively low saponification value, associated with increased iodine value of the oil, indicating respectively low free fatty acids and higher proportion of unsaturated fatty acids, an index for better quality of the oil. B.K. Nad, T.J. Purakayastha, and D.V. Singh Copyright © 2001 B.K. Nad et al. All rights reserved. Simulation of fertilizer requirement for irrigated wheat in Eastern India using the QUEFTS model Mon, 01 Jan 1900 00:00:00 +0000 Crop modeling can provide us with information about fertilizer dose to achieve the target yield, crop conditions, etc. Due to conventional and imbalanced fertilizer application, nutrient use efficiency in wheat is low. Estimation of fertilizer requirements based on quantitative approaches can assist in improving yields and nutrient use efficiency. Field experiments were conducted at 20 sites in eastern India (Nadia district of West Bengal) to assess the soil supply, requirement, and internal efficiency of N, P, K, and Zn in wheat. The data were used to calibrate the QUEFTS (Quantitative Evaluation of the Fertility of Tropical Soils) model for site-specific, balanced fertilizer recommendations. The parameters of maximum accumulation (a) and maximum dilution (d) in wheat were calculated for N (35, 100), P (129, 738), K (17, 56), and Zn (21502, 140244). Grain yield of wheat showed statistically significant correlation with N (R2 = 0.937**), P (R2 = 0.901**), and K uptake (R2 = 0.801**). The NPK ratio to produce 1 tonne grain yield of wheat was calculated to be 4.9:1.0:8.9. The relationships between chemical properties and nutrient-supplying capacity of soils were also established. The model was validated using the data from four other experiments. Observed yields with different amounts of N, P, K, and Zn were in good agreement with the predicted values, suggesting that the validated QUEFTS model can be used for site-specific nutrient management of wheat. Debtanu Maiti, D.K. Das, and H. Pathak Copyright © 2006 Debtanu Maiti et al. All rights reserved.