Table of Contents
Ulcers
Volume 2011, Article ID 340157, 23 pages
http://dx.doi.org/10.1155/2011/340157
Review Article

The Human Gastric Pathogen Helicobacter pylori and Its Association with Gastric Cancer and Ulcer Disease

Department of Molecular Biology, Max Planck Institute for Infection Biology, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany

Received 8 October 2010; Accepted 25 April 2011

Academic Editor: Hajime Kuwayama

Copyright © 2011 Bianca Bauer and Thomas F. Meyer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Kidd and I. M. Modlin, “A century of Helicobacter pylori: paradigms lost-paradigms regained,” Digestion, vol. 59, no. 1, pp. 1–15, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. J. R. Warren, “Unidentified curved bacilli on gastric epithelium in active chronic gastritis,” Lancet, vol. 1, no. 8336, pp. 1273–1275, 1983. View at Google Scholar
  3. B. J. Marshall, J. A. Armstrong, D. B. McGechie, and R. J. Glancy, “Attempt to fulfil Koch's postulates for pyloric campylobacter,” Medical Journal of Australia, vol. 142, no. 8, pp. 436–439, 1985. View at Google Scholar · View at Scopus
  4. A. Nomura, G. N. Stemmermann, P. H. Chyou, I. Kato, G. I. Perez-Perez, and M. J. Blaser, “Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii,” New England Journal of Medicine, vol. 325, no. 16, pp. 1132–1136, 1991. View at Google Scholar · View at Scopus
  5. J. G. Kusters, A. H. M. van Vliet, and E. J. Kuipers, “Pathogenesis of Helicobacter pylori infection,” Clinical Microbiology Reviews, vol. 19, no. 3, pp. 449–490, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. J. Parsonnet, G. D. Friedman, and D. P. Vandersteen, “Helicobacter pylori infection and the risk of gastric carcinoma,” New England Journal of Medicine, vol. 325, no. 16, pp. 1127–1131, 1991. View at Google Scholar · View at Scopus
  7. J. Parsonnet, S. Hansen, and L. Rodriguez, “Helicobacter pylori infection and gastric lymphoma,” New England Journal of Medicine, vol. 330, no. 18, pp. 1267–1271, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. L. E. Hansson, L. Engstrand, and O. Nyren, “Helicobacter pylori infection: independent risk indicator of gastric adenocarcinoma,” Gastroenterology, vol. 105, no. 4, pp. 1098–1103, 1993. View at Google Scholar · View at Scopus
  9. P. J. Hu, H. M. Mitchell, Y. Y. Li, M. H. Zhou, and S. L. Hazell, “Association of Helicobacter pylori with gastric cancer and observations on the detection of this bacterium in gastric cancer cases,” American Journal of Gastroenterology, vol. 89, no. 10, pp. 1806–1810, 1994. View at Google Scholar · View at Scopus
  10. N. Uemura, S. Okamoto, and S. Yamamoto, “Helicobacter pylori infection and the development of gastric cancer,” New England Journal of Medicine, vol. 345, no. 11, pp. 784–789, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. World Health Organisation, “Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7–14 June 1994,” IARC Monographs on the Evaluation of Carcinogenic Risks to Humans / World Health Organization, International Agency for Research on Cancer, vol. 61, pp. 1–241, 1994. View at Google Scholar
  12. B. Linz, F. Balloux, and Y. Moodley, “An African origin for the intimate association between humans and Helicobacter pylori,” Nature, vol. 445, no. 7130, pp. 915–918, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. D. Falush, T. Wirth, and B. Linz, “Traces of human migrations in Helicobacter pylori populations,” Science, vol. 299, no. 5612, pp. 1582–1585, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. Y. Moodley, B. Linz, Y. Yamaoka et al., “The peopling of the pacific from a bacterial perspective,” Science, vol. 323, no. 5913, pp. 527–530, 2009. View at Publisher · View at Google Scholar · View at PubMed
  15. J. V. Solnick and D. B. Schauer, “Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases,” Clinical Microbiology Reviews, vol. 14, no. 1, pp. 59–97, 2001. View at Publisher · View at Google Scholar · View at PubMed
  16. T. L. Cover and M. J. Blaser, “Helicobacter pylori in health and disease,” Gastroenterology, vol. 136, no. 6, pp. 1863–1873, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. M. A. Al-Moagel, D. G. Evans, and M. E. Abdulghani, “Prevalence of Helicobacter (formerly Campylobacter) pylori infection in Saudia Arabia, and comparison of those with and without upper gastrointestinal symptoms,” American Journal of Gastroenterology, vol. 85, no. 8, pp. 944–948, 1990. View at Google Scholar · View at Scopus
  18. D. Y. Graham, M. F. Go, and D. J. Evans, “Review article: urease, gastric ammonium/ammonia, and Helicobacter pylori—the past, the present, and recommendations for future research,” Alimentary Pharmacology and Therapeutics, vol. 6, no. 6, pp. 659–669, 1992. View at Google Scholar · View at Scopus
  19. H. M. Malaty, “Epidemiology of Helicobacter pylori infection, best practice and research,” Clinical Gastroenterology, vol. 21, no. 2, pp. 205–214, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. K. D. Crew and A. I. Neugut, “Epidemiology of gastric cancer,” World Journal of Gastroenterology, vol. 12, no. 3, pp. 354–362, 2006. View at Google Scholar · View at Scopus
  21. R. A. Feldman, A. J. P. Eccersley, and J. M. Hardie, “Epidemiology of Helicobacter pylori: acquisition, transmission, population prevalence and disease-to-infection ratio,” British Medical Bulletin, vol. 54, no. 1, pp. 39–53, 1998. View at Google Scholar · View at Scopus
  22. H. Malaty, H. M. T. El-Zimaity, R. M. Genta, R. A. Cole, and D. Y. Graham, “High-dose proton pump inhibitor plus amoxycillin for the treatment or retreatment of Helicobacter pylori infection,” Alimentary Pharmacology and Therapeutics, vol. 10, no. 6, pp. 1001–1004, 1996. View at Google Scholar · View at Scopus
  23. R. M. Peek and M. J. Blaser, “Helicobacter pylori and gastrointestinal tract adenocarcinomas,” Nature Reviews Cancer, vol. 2, no. 1, pp. 28–37, 2002. View at Google Scholar · View at Scopus
  24. M. Kurosawa, S. Kikuchi, Y. Inaba, T. Ishibashi, and F. Kobayashi, “Helicobacter pylori infection among Japanese children,” Journal of Gastroenterology and Hepatology, vol. 15, no. 12, pp. 1382–1385, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Yamaoka, D. H. Kwon, and D. Y. Graham, “A M(r) 34000 proinflammatory outer membrane protein (OipA) of Helicobacter pylori,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 7533–7538, 2000. View at Google Scholar · View at Scopus
  26. K. J. Goodman, P. Correa, H. J. Tenganá Aux et al., “Helicobacter pylori infection in the Colombian Andes: a population-based study of transmission pathways,” American Journal of Epidemiology, vol. 144, no. 3, pp. 290–299, 1996. View at Google Scholar
  27. R. J. Hopkins, P. A. Vial, and C. Ferreccio, “Seroprevalence of Helicobacter pylori in chile: vegetables may serve as one route of transmission,” Journal of Infectious Diseases, vol. 168, no. 1, pp. 222–226, 1993. View at Google Scholar
  28. P. D. Klein, R. Gilman, and R. Leon-Barua, “Water source as risk factor for Helicobacter pylori infection in Peruvian children,” Lancet, vol. 337, no. 8756, pp. 1503–1506, 1991. View at Publisher · View at Google Scholar
  29. M. P. Dore, A. R. Sepulveda, and H. El-Zimaity, “Isolation of helicobacter pylori from sheep-implications for transmission to humans,” American Journal of Gastroenterology, vol. 96, no. 5, pp. 1396–1401, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. J. G. Fox, “Non-human reservoirs of Helicobacter pylori,” Alimentary Pharmacology and Therapeutics, Supplement, vol. 9, no. 2, pp. 93–103, 1995. View at Google Scholar · View at Scopus
  31. T. Kwok, S. Backert, H. Schwarz, J. Berger, and T. F. Meyer, “Specific entry of Helicobacter pylori into cultured gastric epithelial cells via a zipper-like mechanism,” Infection and Immunity, vol. 70, no. 4, pp. 2108–2120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. J. D. Oh, S. M. Karam, and J. I. Gordon, “Intracellular Helicobacter pylori in gastric epithelial progenitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 14, pp. 5186–5191, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. A. Özbek, E. Özbek, H. Dursun, Y. Kalkan, and T. Demirci, “Can Helicobacter pylori invade human gastric mucosa?: an in vivo study using electron microscopy, immunohistochemical methods, and real-time polymerase chain reaction,” Journal of Clinical Gastroenterology, vol. 44, no. 6, pp. 416–422, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. A. M. Petersen, J. Blom, L. P. Andersen, and K. A. Krogfelt, “Role of strain type, AGS cells and fetal calf serum in Helicobacter pylori adhesion and invasion assays,” FEMS Immunology and Medical Microbiology, vol. 29, no. 1, pp. 59–67, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. M. R. Terebiznik, C. L. Vazquez, and K. Torbicki, “Helicobacter pylori VacA toxin promotes bacterial intracellular survival in gastric epithelial cells,” Infection and Immunity, vol. 74, no. 12, pp. 6599–6614, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. H. M. S. Algood and T. L. Cover, “Helicobacter pylori persistence: an overview of interactions between H. pylori and host immune defenses,” Clinical Microbiology Reviews, vol. 19, no. 4, pp. 597–613, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. N. J. Talley, J. E. Ormand, C. A. Frie, and A. R. Zinsmeister, “Stability of pH gradients in vivo across the stomach in Helicobacter pylori gastritis, dyspepsia, and health,” American Journal of Gastroenterology, vol. 87, no. 5, pp. 590–594, 1992. View at Google Scholar · View at Scopus
  38. J. V. Solnick, C. Josenhans, S. Suerbaum, L. S. Tompkins, and A. Labigne, “Construction and characterization of an isogenic urease-negative mutant of Helicobacter mustelae,” Infection and Immunity, vol. 63, no. 9, pp. 3718–3721, 1995. View at Google Scholar · View at Scopus
  39. G. Geis, H. Leying, S. Suerbaum, U. Mai, and W. Opferkuch, “Ultrastructure and chemical analysis of Campylobacter pylori flagella,” Journal of Clinical Microbiology, vol. 27, no. 3, pp. 436–441, 1989. View at Google Scholar · View at Scopus
  40. L. K. Sycuro, Z. Pincus, K. D. Gutierrez et al., “Peptidoglycan crosslinking relaxation promotes Helicobacter pylori's helical shape and stomach colonization,” Cell, vol. 141, no. 5, pp. 822–833, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. R. Haas, T. F. Meyer, and J. P. M. Van Putten, “Aflagellated mutants of Helicobacter pylori generated by genetic transformation of naturalloy competent strains using transposon shuttle mutagenesis,” Molecular Microbiology, vol. 8, no. 4, pp. 753–760, 1993. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Suerbaum, “The complex flagella of gastric Helicobacter species,” Trends in Microbiology, vol. 3, no. 5, pp. 168–170, 1995. View at Google Scholar · View at Scopus
  43. K. A. Eaton, S. Suerbaum, C. Josenhans, and S. Krakowka, “Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes,” Infection and Immunity, vol. 64, no. 7, pp. 2445–2448, 1996. View at Google Scholar · View at Scopus
  44. D. J. McGee, M. L. Langford, E. L. Watson, J. E. Carter, Y. T. Chen, and K. M. Ottemann, “Colonization and inflammation deficiencies in Mongolian gerbils infected by Helicobacter pylori chemotaxis mutants,” Infection and Immunity, vol. 73, no. 3, pp. 1820–1827, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. S. R. Schreiber, M. Konradt, C. Groll et al., “The spatial orientation of Helicobacter pylori in the gastric mucus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 14, pp. 5024–5029, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. M. A. Croxen, G. Sisson, R. Melano, and P. S. Hoffman, “The Helicobacter pylori chemotaxis receptor tlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa,” Journal of Bacteriology, vol. 188, no. 7, pp. 2656–2665, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. V. Necchi, M. E. Candusso, and F. Tava, “Intracellular, intercellular, and stromal invasion of gastric mucosa, preneoplastic lesions, and cancer by Helicobacter pylori,” Gastroenterology, vol. 132, no. 3, pp. 1009–1023, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. L. A. Noach, T. M. Rolf, and G. N. J. Tytgat, “Electron microscopic study of association between Helicobacter pylori and gastric and duodenal mucosa,” Journal of Clinical Pathology, vol. 47, no. 8, pp. 699–704, 1994. View at Google Scholar · View at Scopus
  49. A. Dossumbekova, C. Prinz, J. Mages et al., “Helicobacter pylori HopH (OipA) and bacterial pathogenicity: genetic and functional genomic analysis of hopH gene polymorphisms,” Journal of Infectious Diseases, vol. 194, no. 10, pp. 1346–1355, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. D. Ilver, A. Arnqvist, J. Ögren et al., “Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging,” Science, vol. 279, no. 5349, pp. 373–377, 1998. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Mahdavi, B. Sondén, M. Hurtig et al., “Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation,” Science, vol. 297, no. 5581, pp. 573–578, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. B. Peck, M. Ortkamp, K. D. Diehl, E. Hundt, and B. Knapp, “Conservation, localization and expression of HopZ, a protein involved in adhesion of Helicobacter pylori,” Nucleic Acids Research, vol. 27, no. 16, pp. 3325–3333, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Aspholm-Hurtig, G. Dailide, M. Lahmann et al., “Functional adaptation of BabA the H. pylori ABO blood group antigen binding adhesin,” Science, vol. 305, no. 5683, pp. 519–522, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. A. Bäckström, C. Lundberg, D. Kersulyte, D. E. Berg, T. Borén, and A. Arnqvist, “Metastability of Helicobacter pylori bab adhesin genes and dynamics in Lewis b antigen binding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 48, pp. 16923–16928, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. J. V. Solnick, L. M. Hansen, N. R. Salama, J. K. Boonjakuakul, and M. Syvanen, “Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 7, pp. 2106–2111, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. C. Petersson, M. Forsberg, M. Aspholm et al., “Helicobacter pylori SabA adhesin evokes a strong inflammatory response in human neutrophils which is down-regulated by the neutrophil-activating protein,” Medical Microbiology and Immunology, vol. 195, no. 4, pp. 195–206, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. S. Tan, L. S. Tompkins, and M. R. Amieva, “Helicobacter pylori usurps cell polarity to turn the cell surface into a replicative niche,” PLoS Pathogens, vol. 5, no. 5, Article ID e1000407, 2009. View at Publisher · View at Google Scholar · View at PubMed
  58. R. Battan, M. C. Raviglione, A. Palagiano et al., “Helicobacter pylori infection in patients with acquired immune deficiency syndrome,” American Journal of Gastroenterology, vol. 85, no. 12, pp. 1576–1579, 1990. View at Google Scholar · View at Scopus
  59. K. B. Bamford, X. Fan, S. E. Crowe et al., “Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype,” Gastroenterology, vol. 114, no. 3, pp. 482–492, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Muotiala, I. M. Helander, L. Pyhala, T. U. Kosunen, and A. P. Moran, “Low biological activity of Helicobacter pylori lipopolysaccharide,” Infection and Immunity, vol. 60, no. 4, pp. 1714–1716, 1992. View at Google Scholar · View at Scopus
  61. P. M. Lepper, M. Triantafilou, C. Schumann, E. M. Schneider, and K. Triantafilou, “Lipopolysaccharides from Helicobacter pylori can act as antagonists for Toll-like receptor 4,” Cellular Microbiology, vol. 7, no. 4, pp. 519–528, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. A. P. Moran, B. Lindner, and E. J. Walsh, “Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth-form lipopolysaccharides,” Journal of Bacteriology, vol. 179, no. 20, pp. 6453–6463, 1997. View at Google Scholar · View at Scopus
  63. G. O. Aspinall and M. A. Monteiro, “Lipopolysaccharides of Helicobacter pylori strains P466 and MO19: structures of the O antigen and core oligosaccharide regions,” Biochemistry, vol. 35, no. 7, pp. 2498–2504, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. B. J. Appelmelk, I. Simoons-Smit, R. Negrini et al., “Potential role of molecular mimicry between Helicobacter pylori lipopolysaccharide and host Lewis blood group antigens in autoimmunity,” Infection and Immunity, vol. 64, no. 6, pp. 2031–2040, 1996. View at Google Scholar · View at Scopus
  65. C. Wunder, Y. Churin, and F. Winau, “Cholesterol glucosylation promotes immune evasion by Helicobacter pylori,” Nature Medicine, vol. 12, no. 9, pp. 1030–1038, 2006. View at Publisher · View at Google Scholar · View at PubMed
  66. M. Ringnér, K. H. Valkonen, and T. Wadström, “Binding of vitronectin and plasminogen to Helicobacter pylori,” FEMS Immunology and Medical Microbiology, vol. 9, no. 1, pp. 29–34, 1994. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Andersen-Nissen, K. D. Smith, K. L. Strobe et al., “Evasion of Toll-like receptor 5 by flagellated bacteria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 26, pp. 9247–9252, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. A. T. Gewirtz, Y. Yu, U. S. Krishna, D. A. Israel, S. L. Lyons, and R. M. Peek, “Helicobacter pylori flagellin evades toll-like receptor 5-mediated innate immunity,” Journal of Infectious Diseases, vol. 189, no. 10, pp. 1914–1920, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. S. K. Lee, A. Stack, E. Katzowitsch, S. I. Aizawa, S. Suerbaum, and C. Josenhans, “Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5,” Microbes and Infection, vol. 5, no. 15, pp. 1345–1356, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. B. Gebert, W. Fischer, E. Weiss, R. Hoffmann, and R. Haas, “Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation,” Science, vol. 301, no. 5636, pp. 1099–1102, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. V. J. Torres, S. E. VanCompernolle, M. S. Sundrud, D. Unutmaz, and T. L. Cover, “Helicobacter pylori vacuolating cytotoxin inhibits activation-induced proliferation of human T and B lymphocyte subsets,” Journal of Immunology, vol. 179, no. 8, pp. 5433–5440, 2007. View at Google Scholar · View at Scopus
  72. R. J. Menaker, P. J. M. Ceponis, and N. L. Jones, “Helicobacter pylori induces apoptosis of macrophages in association with alterations in the mitochondrial pathway,” Infection and Immunity, vol. 72, no. 5, pp. 2889–2898, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Y. Zheng and N. L. Jones, “Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein,” Cellular Microbiology, vol. 5, no. 1, pp. 25–40, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Schmees, C. Prinz, T. Treptau et al., “Inhibition of T-cell proliferation by Helicobacter pylori gamma-glutamyl transpeptidase,” Gastroenterology, vol. 132, no. 5, pp. 1820–1833, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. J. Zabaleta, D. J. McGee, A. H. Zea et al., “Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta),” Journal of Immunology, vol. 173, no. 1, pp. 586–593, 2004. View at Google Scholar · View at Scopus
  76. A. P. Gobert, D. J. McGee, M. Akhtar et al., “Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 24, pp. 13844–13849, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. J. Yuan, P. Li, J. Tao et al., “H. pylori escape host immunoreaction through inhibiting ILK expression by VacA,” Cellular and Molecular Immunology, vol. 6, no. 3, pp. 191–197, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. N. Akopyanz, N. O. Bukanov, T. U. Westblom, S. Kresovich, and D. E. Berg, “DNA diversity among clinical isolates of helicobacter pylori detected by PCR-based RAPD fingerprinting,” Nucleic Acids Research, vol. 20, no. 19, pp. 5137–5142, 1992. View at Google Scholar · View at Scopus
  79. I. Kansau, J. Raymond, and E. Bingen, “Genotyping of Helicobacter pylori isolates by sequencing of PCR products and comparison with the RAPD technique,” Research in Microbiology, vol. 147, no. 8, pp. 661–669, 1996. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Miehlke, R. M. Genta, D. Y. Graham, and M. F. Go, “Molecular relationships of Helicobacter pylori strains in a family with gastroduodenal disease,” American Journal of Gastroenterology, vol. 94, no. 2, pp. 364–368, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. B. Björkholm, M. Sjölund, P. G. Falk, O. G. Berg, L. Engstrand, and D. I. Andersson, “Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 25, pp. 14607–14612, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. S. Suerbaum and C. Josenhans, “Helicobacter pylori evolution and phenotypic diversification in a changing host,” Nature Reviews Microbiology, vol. 5, no. 6, pp. 441–452, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. J. F. Tomb, O. White, A. R. Kerlavage et al., “The complete genome sequence of the gastric pathogen Helicobacter pylori,” Nature, vol. 388, no. 6642, pp. 539–547, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. B. D. Robertson and T. F. Meyer, “Genetic variation in pathogenic bacteria,” Trends in Genetics, vol. 8, no. 12, pp. 422–427, 1992. View at Google Scholar · View at Scopus
  85. L. Salaün, B. Linz, S. Suerbaum, and N. J. Saunders, “The diversity within an expanded and redefined repertoire of phase-variable genes in Helicobacter pylori,” Microbiology, vol. 150, no. 4, pp. 817–830, 2004. View at Google Scholar · View at Scopus
  86. N. J. Saunders, J. F. Peden, D. W. Hood, and E. R. Moxon, “Simple sequence repeats in the Helicobacter pylori genome,” Molecular Microbiology, vol. 27, no. 6, pp. 1091–1098, 1998. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Pérez-Losada, E. B. Browne, A. Madsen, T. Wirth, R. P. Viscidi, and K. A. Crandall, “Population genetics of microbial pathogens estimated from multilocus sequence typing (MLST) data,” Infection, Genetics and Evolution, vol. 6, no. 2, pp. 97–112, 2006. View at Publisher · View at Google Scholar · View at PubMed
  88. M. S. Dorer, J. Fero, and N. R. Salama, “DNA damage triggers genetic exchange in Helicobacter pylori,” PLoS Pathogens, vol. 6, no. 7, Article ID e1001026, pp. 1–10, 2010. View at Publisher · View at Google Scholar · View at PubMed
  89. D. N. Baldwin, B. Shepherd, and P. Kraemer, “Identification of Helicobacter pylori genes that contribute to stomach colonization,” Infection and Immunity, vol. 75, no. 2, pp. 1005–1016, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, “Global cancer statistics, 2002,” CA: A Cancer Journal for Clinicians, vol. 55, no. 2, pp. 74–108, 2002. View at Google Scholar · View at Scopus
  91. World Health Organization, “Disease and injury country estimates,” 2009.
  92. P. Bertuccio, L. Chatenoud, and F. Levi, “Recent patterns in gastric cancer: a global overview,” International Journal of Cancer, vol. 125, no. 3, pp. 666–673, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. P. Lauren, “The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification,” Acta Pathologica et Microbiologica Scandinavica, vol. 64, pp. 31–49, 1965. View at Google Scholar · View at Scopus
  94. D. B. Polk and R. M. Peek, “Helicobacter pylori: gastric cancer and beyond,” Nature Reviews Cancer, vol. 10, no. 6, pp. 403–414, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. P. Correa, “Diet modification and gastric cancer prevention,” Journal of the National Cancer Institute. Monographs, vol. 12, no. 12, pp. 75–78, 1992. View at Google Scholar · View at Scopus
  96. J. L. Telford, A. Covacci, R. Rappuoli, and P. Chiara, “Immunobiology of Helicobacter pylori infection,” Current Opinion in Immunology, vol. 9, no. 4, pp. 498–503, 1997. View at Publisher · View at Google Scholar
  97. J. H. Kurata and B. M. Haile, “Epidemiology of peptic ulcer disease,” Clinics in Gastroenterology, vol. 13, no. 2, pp. 289–307, 1984. View at Google Scholar
  98. S. J. van Zanten, M. F. Dixon, and A. Lee, “The gastric transitional zones: neglected links between gastroduodenal pathology and Helicobacter ecology,” Gastroenterology, vol. 116, no. 5, pp. 1217–1229, 1999. View at Publisher · View at Google Scholar
  99. L. A. García Rodríguez and L. Barreales Tolosa, “Risk of upper gastrointestinal complications among users of traditional NSAIDs and COXIBs in the general population,” Gastroenterology, vol. 132, no. 2, pp. 498–506, 2007. View at Publisher · View at Google Scholar · View at PubMed
  100. S. Take, M. Mizuno, K. Ishiki et al., “The effect of eradicating Helicobacter pylori on the development of gastric cancer in patients with peptic ulcer disease,” American Journal of Gastroenterology, vol. 100, no. 5, pp. 1037–1042, 2005. View at Publisher · View at Google Scholar · View at PubMed
  101. C. Holcombe, “Helicobacter pylori: the African enigma,” Gut, vol. 33, no. 4, pp. 429–431, 1992. View at Google Scholar
  102. R. Ally, H. M. Mitchell, and I. Segal, “Differences in the immune response to H. pylori infection in Sowetan subjects may relate to concurrent parasitic infections,” South African Medical Journal, vol. 90, p. 642, 2000. View at Google Scholar
  103. J. G. Fox, P. Beck, C. A. Dangler et al., “Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces helicobacter-induced gastric atrophy,” Nature Medicine, vol. 6, no. 5, pp. 536–542, 2000. View at Publisher · View at Google Scholar · View at PubMed
  104. R. D. Leunk, P. T. Johnson, B. C. David, W. G. Kraft, and D. R. Morgan, “Cytotoxic activity in broth-culture filtrates of Campylobacter pylori,” Journal of Medical Microbiology, vol. 26, no. 2, pp. 93–99, 1988. View at Google Scholar
  105. M. Gerhard, N. Lehn, N. Neumayer et al., “Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 22, pp. 12778–12783, 1999. View at Publisher · View at Google Scholar
  106. L. J. Van Doorn, C. Figueiredo, R. Sanna et al., “Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pylori,” Gastroenterology, vol. 115, no. 1, pp. 58–66, 1998. View at Publisher · View at Google Scholar
  107. R. A. Alm, L. S. L. Ling, D. T. Moir et al., “Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori,” Nature, vol. 397, no. 6715, pp. 176–180, 1999. View at Publisher · View at Google Scholar · View at PubMed
  108. J. C. Atherton, “H. pylori virulence factors,” British Medical Bulletin, vol. 54, no. 1, pp. 105–120, 1998. View at Google Scholar
  109. M. Rohde, J. Püls, R. Buhrdorf, W. Fischer, and R. Haas, “A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system,” Molecular Microbiology, vol. 49, no. 1, pp. 219–234, 2003. View at Publisher · View at Google Scholar
  110. J. Tanaka, T. Suzuki, H. Mimuro, and C. Sasakawa, “Structural definition on the surface of Helicobacter pylori type IV secretion apparatus,” Cellular Microbiology, vol. 5, no. 6, pp. 395–404, 2003. View at Publisher · View at Google Scholar
  111. T. Kubori, Y. Matsushima, and D. Nakamura, “Supramolecular structure of the salmonella typhimurium type III protein secretion system,” Science, vol. 280, no. 5363, pp. 602–605, 1998. View at Publisher · View at Google Scholar
  112. S. Odenbreit, J. Püls, B. Sedlmaier, E. Gerland, W. Fischer, and R. Haas, “Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion,” Science, vol. 287, no. 5457, pp. 1497–1500, 2000. View at Publisher · View at Google Scholar
  113. B. Bauer, S. Moese, S. Bartfeld, T. F. Meyer, and M. Selbach, “Analysis of cell type-specific responses mediated by the type IV secretion system of Helicobacter pylori,” Infection and Immunity, vol. 73, no. 8, pp. 4643–4652, 2005. View at Publisher · View at Google Scholar · View at PubMed
  114. A. Olofsson, A. Vallström, K. Petzold et al., “Biochemical and functional characterization of Helicobacter pylori vesicles,” Molecular Microbiology, vol. 77, no. 6, pp. 1539–1555, 2010. View at Publisher · View at Google Scholar · View at PubMed
  115. T. Kwok, D. Zabler, S. Urman et al., “Helicobacter exploits integrin for type IV secretion and kinase activation,” Nature, vol. 449, no. 7164, pp. 862–866, 2007. View at Publisher · View at Google Scholar · View at PubMed
  116. L. F. Jiménez-Soto, S. Kutter, and X. Sewald, “Helicobacter pylori type IV secretion apparatus exploits β1 integrin in a novel RGD-independent manner,” PLoS Pathogens, vol. 5, no. 12, Article ID e1000684, 2009. View at Publisher · View at Google Scholar · View at PubMed
  117. A. Saha, S. Backert, C. E. Hammond, M. Gooz, and A. J. Smolka, “Helicobacter pylori CagL activates ADAM17 to induce repression of the gastric H, K-ATPase α subunit,” Gastroenterology, vol. 139, no. 1, pp. 239–248, 2010. View at Publisher · View at Google Scholar · View at PubMed
  118. C. Weydig, A. Starzinski-Powitz, G. Carra, J. Löwer, and S. Wessler, “CagA-independent disruption of adherence junction complexes involves E-cadherin shedding and implies multiple steps in Helicobacter pylori pathogenicity,” Experimental Cell Research, vol. 313, no. 16, pp. 3459–3471, 2007. View at Publisher · View at Google Scholar · View at PubMed
  119. A. M. Y. Nomura, J. Lee, G. N. Stemmermann, R. Y. Nomura, G. I. Perez-Perez, and M. J. Blaser, “Helicobacter pylori CagA seropositivity and gastric carcinoma risk in a Japanese American population,” Journal of Infectious Diseases, vol. 186, no. 8, pp. 1138–1144, 2002. View at Publisher · View at Google Scholar · View at PubMed
  120. M. J. Blaser, G. I. Perez-Perez, H. Kleanthous et al., “Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach,” Cancer Research, vol. 55, no. 10, pp. 2111–2115, 1995. View at Google Scholar
  121. A. H. Wu, J. E. Crabtree, L. Bernstein et al., “Role of Helicobacter pylori CagA+ strains and risk of adenocarcinoma of the stomach and esophagus,” International Journal of Cancer, vol. 103, no. 6, pp. 815–821, 2003. View at Publisher · View at Google Scholar · View at PubMed
  122. N. Ohnishi, H. Yuasa, S. Tanaka et al., “Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 3, pp. 1003–1008, 2008. View at Publisher · View at Google Scholar · View at PubMed
  123. H. Mimuro, T. Suzuki, S. Nagai et al., “Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach,” Cell Host and Microbe, vol. 2, no. 4, pp. 250–263, 2007. View at Publisher · View at Google Scholar · View at PubMed
  124. B. Bauer, S. Bartfeld, and T. F. Meyer, “H. pylori selectively blocks EGFR endocytosis via the non-receptor kinase c-Abl and CagA,” Cellular Microbiology, vol. 11, no. 1, pp. 156–169, 2009. View at Publisher · View at Google Scholar · View at PubMed
  125. S. Brandt, T. Kwok, R. Hartig, W. König, and S. Backert, “NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 26, pp. 9300–9305, 2005. View at Publisher · View at Google Scholar · View at PubMed
  126. D. M. Bronte-Tinkew, M. Terebiznik, and A. Franco, “Helicobacter pylori cytotoxin-associated gene a activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo,” Cancer Research, vol. 69, no. 2, pp. 632–639, 2009. View at Publisher · View at Google Scholar · View at PubMed
  127. N. Murata-Kamiya, K. Kikuchi, T. Hayashi, H. Higashi, and M. Hatakeyama, “Helicobacter pylori exploits host membrane phosphatidylserine for delivery, localization, and pathophysiological action of the CagA oncoprotein,” Cell Host and Microbe, vol. 7, no. 5, pp. 399–411, 2010. View at Publisher · View at Google Scholar · View at PubMed
  128. M. Stein, R. Rappuoli, and A. Covacci, “Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 3, pp. 1263–1268, 2000. View at Publisher · View at Google Scholar
  129. M. Asahi, T. Azuma, and S. Ito, “Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells,” Journal of Experimental Medicine, vol. 191, no. 4, pp. 593–602, 2000. View at Publisher · View at Google Scholar
  130. M. Selbach, S. Moese, C. R. Hauck, T. F. Meyer, and S. Backert, “Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo,” Journal of Biological Chemistry, vol. 277, no. 9, pp. 6775–6778, 2002. View at Publisher · View at Google Scholar · View at PubMed
  131. M. Poppe, S. M. Feller, G. Römer, and S. Wessler, “Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility,” Oncogene, vol. 26, no. 24, pp. 3462–3472, 2007. View at Publisher · View at Google Scholar · View at PubMed
  132. M. Selbach, S. Moese, R. Hurwitz, C. R. Hauck, T. F. Meyer, and S. Backert, “The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation,” EMBO Journal, vol. 22, no. 3, pp. 515–528, 2003. View at Publisher · View at Google Scholar · View at PubMed
  133. I. Tammer, S. Brandt, R. Hartig, W. König, and S. Backert, “Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering,” Gastroenterology, vol. 132, no. 4, pp. 1309–1319, 2007. View at Publisher · View at Google Scholar · View at PubMed
  134. M. Hatakeyama, “SagA of CagA in Helicobacter pylori pathogenesis,” Current Opinion in Microbiology, vol. 11, no. 1, pp. 30–37, 2008. View at Publisher · View at Google Scholar · View at PubMed
  135. M. Stein, F. Bagnoli, R. Halenbeck, R. Rappuoli, W. J. Fantl, and A. Covacci, “c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs,” Molecular Microbiology, vol. 43, no. 4, pp. 971–980, 2002. View at Publisher · View at Google Scholar
  136. K. R. Jones, Y. M. Joo, S. Jang et al., “Polymorphism in the cagA EPIYA motif impacts development of gastric cancer,” Journal of Clinical Microbiology, vol. 47, no. 4, pp. 959–968, 2009. View at Publisher · View at Google Scholar · View at PubMed
  137. H. Higashi, R. Tsutsumi, S. Muto et al., “SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein,” Science, vol. 295, no. 5555, pp. 683–686, 2002. View at Publisher · View at Google Scholar · View at PubMed
  138. E. D. Segal, J. Cha, J. Lo, S. Falkow, and L. S. Tompkins, “Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 25, pp. 14559–14564, 1999. View at Publisher · View at Google Scholar
  139. M. Naito, T. Yamazaki, R. Tsutsumi et al., “Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA,” Gastroenterology, vol. 130, no. 4, pp. 1181–1190, 2006. View at Publisher · View at Google Scholar · View at PubMed
  140. S. Backert, N. Tegtmeyer, and M. Selbach, “The versatility of helicobacter pylori Cag A effector protein functions: the master key hypothesis,” Helicobacter, vol. 15, no. 3, pp. 163–176, 2010. View at Publisher · View at Google Scholar · View at PubMed
  141. M. R. Amieva, R. Vogetmann, A. Covacci, L. S. Tompkins, W. J. Nelson, and S. Falkow, “Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA,” Science, vol. 300, no. 5624, pp. 1430–1434, 2003. View at Publisher · View at Google Scholar · View at PubMed
  142. I. Saadat, H. Higashi, and C. Obuse, “Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity,” Nature, vol. 447, no. 7142, pp. 330–333, 2007. View at Publisher · View at Google Scholar · View at PubMed
  143. S. Ren, H. Higashi, H. Lu, T. Azuma, and M. Hatakeyama, “Structural basis and functional consequence of Helicobacter pylori cagA multimerization in cells,” Journal of Biological Chemistry, vol. 281, no. 43, pp. 32344–32352, 2006. View at Publisher · View at Google Scholar · View at PubMed
  144. D. Nesić, M. C. Miller, Z. T. Quinkert, M. Stein, B. T. Chait, and C. E. Stebbins, “Helicobacter pylori CagA inhibits PAR1-MARK family kinases by mimicking host substrates,” Nature Structural and Molecular Biology, vol. 17, no. 1, pp. 130–132, 2010. View at Publisher · View at Google Scholar · View at PubMed
  145. D. Wu and W. Pan, “GSK3: a multifaceted kinase in Wnt signaling,” Trends in Biochemical Sciences, vol. 35, no. 3, pp. 161–168, 2010. View at Publisher · View at Google Scholar · View at PubMed
  146. A. T. Franco, D. A. Israel, M. K. Washington et al., “Activation of β-catenin by carcinogenic Helicobacter pylori,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10646–10651, 2005. View at Publisher · View at Google Scholar · View at PubMed
  147. N. Murata-Kamiya, Y. Kurashima, Y. Teishikata et al., “Helicobacter pylori CagA interacts with E-cadherin and deregulates the β-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells,” Oncogene, vol. 26, no. 32, pp. 4617–4626, 2007. View at Publisher · View at Google Scholar · View at PubMed
  148. M. Suzuki, H. Mimuro, T. Suzuki, M. Park, T. Yamamoto, and C. Sasakawa, “Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion,” Journal of Experimental Medicine, vol. 202, no. 9, pp. 1235–1247, 2005. View at Publisher · View at Google Scholar · View at PubMed
  149. O. Sokolova, P. M. Bozko, and M. Naumann, “Helicobacter pylori suppresses glycogen synthase kinase 3β to promote β-catenin activity,” Journal of Biological Chemistry, vol. 283, no. 43, pp. 29367–29374, 2008. View at Publisher · View at Google Scholar · View at PubMed
  150. V. Ricci, C. Ciacci, R. Zarrilli et al., “Effect of Helicobacter pylori on gastric epithelial cell migration and proliferation in vitro: role of VacA and CagA,” Infection and Immunity, vol. 64, no. 7, pp. 2829–2833, 1996. View at Google Scholar
  151. S. A. Sharma, M. K. R. Tummuru, M. J. Blaser, and L. D. Kerr, “Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells,” Journal of Immunology, vol. 160, no. 5, pp. 2401–2407, 1998. View at Google Scholar
  152. A. Bhattacharyya, S. Pathak, S. Datta, S. Chattopadhyay, J. Basu, and M. Kundu, “Mitogen-activated protein kinases and nuclear factor-κB regulate Helicobacter pylori-mediated interleukin-8 release from macrophages,” Biochemical Journal, vol. 368, no. 1, pp. 121–129, 2002. View at Publisher · View at Google Scholar · View at PubMed
  153. M. Naumann, S. Wessler, C. Bartsch et al., “Activation of activator protein 1 and stress response kinases in epithelial cells colonized by Helicobacter pylori encoding the cag pathogenicity island,” Journal of Biological Chemistry, vol. 274, no. 44, pp. 31655–31662, 1999. View at Publisher · View at Google Scholar
  154. C. C. Allison, T. A. Kufer, E. Kremmer, M. Kaparakis, and R. L. Ferrero, “Helicobacter pylori induces MAPK phosphorylation and AP-1 activation via a NOD1-dependent mechanism,” Journal of Immunology, vol. 183, no. 12, pp. 8099–8109, 2009. View at Publisher · View at Google Scholar · View at PubMed
  155. J. Viala, C. Chaput, I. G. Boneca et al., “Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island,” Nature Immunology, vol. 5, no. 11, pp. 1166–1174, 2004. View at Publisher · View at Google Scholar · View at PubMed
  156. M. L. Hutton, M. Kaparakis-Liaskos, L. Turner, A. Cardona, T. Kwok, and R. L. Ferrero, “Helicobacter pylori exploits cholesterol-rich microdomains for induction of NF-κB-dependent responses and peptidoglycan delivery in epithelial cells,” Infection and Immunity, vol. 78, no. 11, pp. 4523–4531, 2010. View at Publisher · View at Google Scholar · View at PubMed
  157. M. Kaparakis, L. Turnbull, L. Carneiro et al., “Bacterial membrane vesicles deliver peptidoglycan to NOD1 in epithelial cells,” Cellular Microbiology, vol. 12, no. 3, pp. 372–385, 2010. View at Publisher · View at Google Scholar · View at PubMed
  158. S.-Y. Kim, Y.-C. Lee, H. K. Kim, and M. J. Blaser, “Helicobacter pylori CagA transfection of gastric epithelial cells induces interleukin-8,” Cellular Microbiology, vol. 8, no. 1, pp. 97–106, 2006. View at Publisher · View at Google Scholar · View at PubMed
  159. V. Necchi, P. Sommi, V. Ricci, and E. Solcia, “In vivo accumulation of Helicobacter pylori products, NOD1, ubiquitinated proteins and proteasome in a novel cytoplasmic structure,” PloS One, vol. 5, no. 3, article e9716, 2010. View at Google Scholar
  160. A. T. Franco, D. B. Friedman, T. A. Nagy et al., “Delineation of a carcinogenic Helicobacter pylori proteome,” Molecular and Cellular Proteomics, vol. 8, no. 8, pp. 1947–1958, 2009. View at Publisher · View at Google Scholar · View at PubMed
  161. A. Wada, E. Yamasaki, and T. Hirayama, “Helicobacter pylori vacuolating cytotoxin, VacA, is responsible for gastric ulceration,” Journal of Biochemistry, vol. 136, no. 6, pp. 741–746, 2004. View at Publisher · View at Google Scholar · View at PubMed
  162. M. Molinari, C. Galli, N. Norais et al., “Vacuoles induced by Helicobacter pylori toxin contain both late endosomal and lysosomal markers,” Journal of Biological Chemistry, vol. 272, no. 40, pp. 25339–25344, 1997. View at Publisher · View at Google Scholar
  163. E. Papini, M. De Bernard, E. Milia et al., “Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 21, pp. 9720–9724, 1994. View at Publisher · View at Google Scholar
  164. Y. Li, A. Wandinger-Ness, J. R. Goldenring, and T. L. Cover, “Clustering and redistribution of late endocytic compartments in response to Helicobacter pylori vacuolating toxin,” Molecular Biology of the Cell, vol. 15, no. 4, pp. 1946–1959, 2004. View at Publisher · View at Google Scholar · View at PubMed
  165. T. L. Cover and S. R. Blanke, “Helicobacter pylori VacA, a paradigm for toxin multifunctionality,” Nature Reviews Microbiology, vol. 3, no. 4, pp. 320–332, 2005. View at Publisher · View at Google Scholar · View at PubMed
  166. J. C. Atherton, P. Cao, R. M. Peek, M. K. R. Tummuru, M. J. Blaser, and T. L. Cover, “Mosaicism in vacuolating cytotoxin alleles of helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration,” Journal of Biological Chemistry, vol. 270, no. 30, pp. 17771–17777, 1995. View at Publisher · View at Google Scholar
  167. C. Figueiredo, J. C. Machado, P. Pharoah et al., “Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma,” Journal of the National Cancer Institute, vol. 94, no. 22, pp. 1680–1687, 2002. View at Google Scholar
  168. L. J. Van Doorn, C. Figueiredo, F. Megraud et al., “Geographic distribution of vacA allelic types of Helicobacter pylori,” Gastroenterology, vol. 116, no. 4, pp. 823–830, 1999. View at Google Scholar
  169. J. L. Telford, P. Ghiara, M. Dell'Orco et al., “Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease,” Journal of Experimental Medicine, vol. 179, no. 5, pp. 1653–1658, 1994. View at Google Scholar
  170. K. Ogura, S. Maeda, M. Nakao et al., “Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil,” Journal of Experimental Medicine, vol. 192, no. 11, pp. 1601–1609, 2000. View at Publisher · View at Google Scholar
  171. T. L. Cover and M. J. Blaser, “Purification and characterization of the vacuolating toxin from Helicobacter pylori,” Journal of Biological Chemistry, vol. 267, no. 15, pp. 10570–10575, 1992. View at Google Scholar
  172. W. Fischer, R. Buhrdorf, E. Gerland, and R. Haas, “Outer membrane targeting of passenger proteins by the vacuolating cytotoxin autotransporter of Helicobacter pylori,” Infection and Immunity, vol. 69, no. 11, pp. 6769–6775, 2001. View at Publisher · View at Google Scholar · View at PubMed
  173. D. Ilver, S. Barone, D. Mercati, P. Lupetti, and J. L. Telford, “Helicobacter pylori toxin VacA is transferred to host cells via a novel contact-dependent mechanism,” Cellular Microbiology, vol. 6, no. 2, pp. 167–174, 2004. View at Publisher · View at Google Scholar
  174. P. Lupetti, J. E. Heuser, and R. Manetti, “Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin,” Journal of Cell Biology, vol. 133, no. 4, pp. 801–807, 1996. View at Google Scholar
  175. M. S. McClain, H. Iwamoto, P. Cao et al., “Essential role of a GXXXG motif for membrane channel formation by Helicobacter pylori vacuolating toxin,” Journal of Biological Chemistry, vol. 278, no. 14, pp. 12101–12108, 2003. View at Publisher · View at Google Scholar · View at PubMed
  176. A. D. Vinion-Dubiel, M. S. McClain, D. M. Czajkowsky et al., “A dominant negative mutant of Helicobacter pylori vacuolating toxin (VacA) inhibits VacA-induced cell vacuolation,” Journal of Biological Chemistry, vol. 274, no. 53, pp. 37736–37742, 1999. View at Publisher · View at Google Scholar
  177. D. Ye, D. C. Willhite, and S. R. Blanke, “Identification of the minimal intracellular vacuolating domain of the Helicobacter pylori vacuolating toxin,” Journal of Biological Chemistry, vol. 274, no. 14, pp. 9277–9282, 1999. View at Publisher · View at Google Scholar
  178. J. A. Garner and T. L. Cover, “Binding and internalization of the Helicobacter pylori vacuolating cytotoxin by epithelial cells,” Infection and Immunity, vol. 64, no. 10, pp. 4197–4203, 1996. View at Google Scholar
  179. K. Yahiro, T. Niidome, M. Kimura et al., “Activation of Helicobacter pylori VacA toxin by alkaline or acid conditions increases its binding to a 250-kDa receptor protein-tyrosine phosphatase β,” Journal of Biological Chemistry, vol. 274, no. 51, pp. 36693–36699, 1999. View at Publisher · View at Google Scholar
  180. E. E. Hennig, M. M. Godlewski, E. Butruk, and J. Ostrowski, “Helicobacter pylori VacA cytotoxin interacts with fibronectin and alters HeLa cell adhesion and cytoskeletal organization in vitro,” FEMS Immunology and Medical Microbiology, vol. 44, no. 2, pp. 143–150, 2005. View at Publisher · View at Google Scholar · View at PubMed
  181. K. Seto, Y. Hayashi-Kuwabara, T. Yoneta, H. Suda, and H. Tamaki, “Vacuolation induced by cytotoxin from Helicobacter pylori is mediated by the EGF receptor in HeLa cells,” FEBS Letters, vol. 431, no. 3, pp. 347–350, 1998. View at Publisher · View at Google Scholar
  182. X. Sewald, B. Gebert-Vogl, S. Prassl et al., “Integrin subunit CD18 Is the T-lymphocyte receptor for the Helicobacter pylori vacuolating cytotoxin,” Cell Host and Microbe, vol. 3, no. 1, pp. 20–29, 2008. View at Publisher · View at Google Scholar · View at PubMed
  183. M. Molinari, C. Galli, M. De Bernard et al., “The acid activation of Helicobacter pylori toxin VacA: structural and membrane binding studies,” Biochemical and Biophysical Research Communications, vol. 248, no. 2, pp. 334–340, 1998. View at Publisher · View at Google Scholar · View at PubMed
  184. V. R. Gupta, H. K. Patel, S. S. Kostolansky, R. A. Ballivian, J. Eichberg, and S. R. Blanke, “Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA,” PLoS Pathogens, vol. 4, no. 5, Article ID e1000073, 2008. View at Publisher · View at Google Scholar · View at PubMed
  185. T. L. Cover, U. S. Krishna, D. A. Israel, and R. M. Peek, “Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin,” Cancer Research, vol. 63, no. 5, pp. 951–957, 2003. View at Google Scholar
  186. D. C. Willhite and S. R. Blanke, “Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity,” Cellular Microbiology, vol. 6, no. 2, pp. 143–154, 2004. View at Publisher · View at Google Scholar
  187. A. Galmiche, J. Rassow, A. Doye et al., “The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release,” EMBO Journal, vol. 19, no. 23, pp. 6361–6370, 2000. View at Google Scholar
  188. D. C. Willhite, T. L. Cover, and S. R. Blanke, “Cellular vacuolation and mitochondrial cytochrome c release are independent outcomes of Helicobacter pylori vacuolating cytotoxin activity that are each dependent on membrane channel formation,” Journal of Biological Chemistry, vol. 278, no. 48, pp. 48204–48209, 2003. View at Publisher · View at Google Scholar · View at PubMed
  189. A. Oldani, M. Cormont, and V. Hofman, “Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells,” PLoS Pathogens, vol. 5, no. 10, article e1000603, 2009. View at Google Scholar
  190. R. H. Argent, R. J. Thomas, D. P. Letley, M. G. Rittig, K. R. Hardie, and J. C. Atherton, “Functional association between the Helicobacter pylori virulence factors VacA and CagA,” Journal of Medical Microbiology, vol. 57, no. 2, pp. 145–150, 2008. View at Publisher · View at Google Scholar · View at PubMed
  191. N. Tegtmeyer, D. Zabler, D. Schmidt, R. Hartig, S. Brandt, and S. Backert, “Importance of EGF receptor, HER2/Neu and Erk1/2 kinase signalling for host cell elongation and scattering induced by the Helicobacter pylori CagA protein: antagonistic effects of the vacuolating cytotoxin VacA,” Cellular Microbiology, vol. 11, no. 3, pp. 488–505, 2009. View at Publisher · View at Google Scholar · View at PubMed
  192. H. Lu, P.-I. Hsu, D. Y. Graham, and Y. Yamaoka, “Duodenal ulcer promoting gene of Helicobacter pylori,” Gastroenterology, vol. 128, no. 4, pp. 833–848, 2005. View at Publisher · View at Google Scholar
  193. N. R. Hussein, R. H. Argent, C. K. Marx, S. R. Patel, K. Robinson, and J. C. Atherton, “Helicobacter pylori dupA is polymorphic, and its active form induces proinflammatory cytokine secretion by mononuclear cells,” Journal of Infectious Diseases, vol. 202, no. 2, pp. 261–269, 2010. View at Publisher · View at Google Scholar · View at PubMed
  194. Y. Yamaoka, T. Kodama, O. Gutierrez, J. G. Kim, K. Kashima, and D. Y. Graham, “Relationship between Helicobacter priori iceA, cagA, and vacA status and clinical outcome: studies in four different countries,” Journal of Clinical Microbiology, vol. 37, no. 7, pp. 2274–2279, 1999. View at Google Scholar
  195. C. Figueiredo, W. G. V. Quint, and R. Sanna, “Genetic organization and heterogeneity of the iceA locus of Helicobacter pylori,” Gene, vol. 246, no. 1-2, pp. 59–68, 2000. View at Publisher · View at Google Scholar
  196. Q. Xu, R. D. Morgan, R. J. Roberts et al., “Functional analysis of iceA1, a CATG-recognizing restriction endonuclease gene in Helicobacter pylori,” Nucleic Acids Research, vol. 30, no. 17, pp. 3839–3847, 2002. View at Google Scholar
  197. R. M. Peek, S. A. Thompson, J. P. Donahue et al., “Adherence to gastric epithelial cells induces expression of a Helicobacter pylori gene, iceA, that is associated with clinical outcome,” Proceedings of the Association of American Physicians, vol. 110, no. 6, pp. 531–544, 1998. View at Google Scholar
  198. Y. Yamaoka, S. Kikuchi, H. M. T. ElZimaity, O. Gutierrez, M. S. Osato, and D. Y. Graham, “Importance of Helicobacter pylori OipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production,” Gastroenterology, vol. 123, no. 2, pp. 414–424, 2002. View at Publisher · View at Google Scholar
  199. F. H. Tabassam, D. Y. Graham, and Y. Yamaoka, “OipA plays a role in Helicobacter pylori-induced focal adhesion kinase activation and cytoskeletal re-organization,” Cellular Microbiology, vol. 10, no. 4, pp. 1008–1020, 2008. View at Publisher · View at Google Scholar · View at PubMed
  200. J. Calam, “Helicobacter pylori modulation of gastric acid,” Yale Journal of Biology and Medicine, vol. 72, no. 2-3, pp. 195–202, 1999. View at Google Scholar
  201. E. M. El-Omar, M. Carrington, and W. H. Chow, “The role of interleukin-1 polymorphisms in the pathogenesis of gastric cancer.,” Nature, vol. 412, no. 6842, p. 99, 2001. View at Google Scholar
  202. E. M. El-Omar, C. S. Rabkin, M. D. Gammon et al., “Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms,” Gastroenterology, vol. 124, no. 5, pp. 1193–1201, 2003. View at Publisher · View at Google Scholar
  203. T. Furuta, N. Shirai, F. Xiao et al., “Polymorphism of interleukin-1β affects the eradication rates of Helicobacter pylori by triple therapy,” Clinical Gastroenterology and Hepatology, vol. 2, no. 1, pp. 22–30, 2004. View at Publisher · View at Google Scholar
  204. I. R. Hwang, P. I. Hsu, and L. E. Peterson, “Interleukin-6 genetic polymorphisms are not related to Helicobacter pylori-associated gastroduodenal diseases,” Helicobacter, vol. 8, no. 2, pp. 142–148, 2003. View at Publisher · View at Google Scholar
  205. J. C. Machado, C. Figueiredo, P. Canedo et al., “A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma,” Gastroenterology, vol. 125, no. 2, pp. 364–371, 2003. View at Publisher · View at Google Scholar
  206. R. Rad, C. Prinz, B. Neu et al., “Synergistic effect of Helicobacter pylori virulence factors and interleukin-1 polymorphisms for the development of severe histological changes in the gastric mucosa,” Journal of Infectious Diseases, vol. 188, no. 2, pp. 272–281, 2003. View at Publisher · View at Google Scholar · View at PubMed
  207. C. F. Zambon, D. Basso, F. Navaglia et al., “Helicobacter pylori virulence genes and host IL-1RN and IL-1β genes interplay in favouring the development of peptic ulcer and intestinal metaplasia,” Cytokine, vol. 18, no. 5, pp. 242–251, 2002. View at Publisher · View at Google Scholar
  208. T. Suzuki, E. Grand, and C. Bowman, “TNF-α and interleukin 1 activate gastrin gene expression via MAPK- and PKC-dependent mechanisms,” American Journal of Physiology Gastrointestinal and Liver Physiology, vol. 281, no. 6, pp. G1405–G1412, 2001. View at Google Scholar
  209. E. J. Yoo, S. Y. Park, and N. Y. Cho, “Influence of IL1B polymorphism on CpG island hypermethylation in Helicobacter pylori-infected gastric cancer,” Virchows Archiv, vol. 456, no. 6, pp. 647–652, 2010. View at Publisher · View at Google Scholar · View at PubMed
  210. I. Ohyama, N. Ohmiya, Y. Niwa et al., “The association between tumour necrosis factor-α gene polymorphism and the susceptibility to rugal hyperplastic gastritis and gastric carcinoma,” European Journal of Gastroenterology and Hepatology, vol. 16, no. 7, pp. 693–700, 2004. View at Publisher · View at Google Scholar
  211. S. S. Yea, Y. I. Yang, W. H. Jang, Y. J. Lee, H. S. Bae, and K. H. Paik, “Association between TNF-α promoter polymorphism and Helicobacter pylori cagA subtype infection,” Journal of Clinical Pathology, vol. 54, no. 9, pp. 703–706, 2001. View at Google Scholar
  212. N. Hamajima, N. Katsuda, K. Matsuo et al., “High anti-Helicobacter pylori antibody seropositivity associated with the combination of IL-8-251TT and IL-10-819TT genotypes,” Helicobacter, vol. 8, no. 2, pp. 105–110, 2003. View at Publisher · View at Google Scholar
  213. S. Hellmig, J. Hampe, U. R. Fölsch, and S. Schreiber, “Role of IL-10 promoter haplotypes in Helicobacter pylori associated gastric inflammation,” Gut, vol. 54, no. 6, p. 888, 2005. View at Publisher · View at Google Scholar · View at PubMed
  214. C. F. Zambon, D. Basso, F. Navaglia et al., “Pro- and anti-inflammatory cytokines gene polymorphisms and Helicobacter pylori infection: interactions influence outcome,” Cytokine, vol. 29, no. 4, pp. 141–152, 2005. View at Publisher · View at Google Scholar · View at PubMed
  215. R. Rad, A. Dossumbekova, and B. Neu, “Cytokine gene polymorphisms influence mucosal cytokine expression, gastric inflammation, and host specific colonisation during Helicobacter pylori infection,” Gut, vol. 53, no. 8, pp. 1082–1089, 2004. View at Publisher · View at Google Scholar · View at PubMed
  216. M. T. H. Ng, R. Van't Hof, and J. C. Crockett, “Increase in NF-κB binding affinity of the variant C allele of the toll-like receptor 9 -1237T/C polymorphism is associated with Helicobacter pylori-induced gastric disease,” Infection and Immunity, vol. 78, no. 3, pp. 1345–1352, 2010. View at Publisher · View at Google Scholar · View at PubMed
  217. P. Hofner, Z. Gyulai, Z. F. Kiss et al., “Genetic polymorphisms of NOD1 and IL-8, but not polymorphisms of TLR4 genes, are associated with Helicobacter pylori-induced duodenal ulcer and gastritis,” Helicobacter, vol. 12, no. 2, pp. 124–131, 2007. View at Publisher · View at Google Scholar · View at PubMed
  218. M. Macarthur, G. L. Hold, and E. M. El-Omar, “Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy,” American Journal of Physiology Gastrointestinal and Liver Physiology, vol. 286, no. 4, pp. G515–G520, 2004. View at Google Scholar
  219. S. Eidt, M. Stolte, and R. Fischer, “Helicobacter pylori gastritis and primary gastric non-Hodgkin's lymphomas,” Journal of Clinical Pathology, vol. 47, no. 5, pp. 436–439, 1994. View at Google Scholar
  220. J. Parsonnet and P. G. Isaacson, “Bacterial infection and MALT lymphoma,” New England Journal of Medicine, vol. 350, no. 3, pp. 213–215, 2004. View at Publisher · View at Google Scholar · View at PubMed
  221. A. De Mascarel, A. Ruskone-Fourmestraux, A. Lavergne-Slove, F. Megraud, P. Dubus, and J. P. Merlio, “Clinical, histological and molecular follow-up of 60 patients with gastric marginal zone lymphoma of mucosa-associated lymphoid tissue,” Virchows Archiv, vol. 446, no. 3, pp. 219–224, 2005. View at Publisher · View at Google Scholar · View at PubMed
  222. W. Fischbach, M. E. Goebeler-Kolve, B. Dragosics, A. Greiner, and M. Stolte, “Long term outcome of patients with gastric marginal zone B cell lymphoma of mucosa associated lymphoid tissue (MALT) following exclusive Helicobacter pylori eradication therapy: experience from a large prospective series,” Gut, vol. 53, no. 1, pp. 34–37, 2004. View at Publisher · View at Google Scholar
  223. S. Nakamura, T. Matsumoto, H. Suekane et al., “Long-term clinical outcome of Helicobacter pylori eradication for gastric mucosa-associated lymphoid tissue lymphoma with a reference to second-line treatment,” Cancer, vol. 104, no. 3, pp. 532–540, 2005. View at Publisher · View at Google Scholar · View at PubMed
  224. T. Wündisch, C. Thiede, A. Morgner et al., “Long-term follow-up of gastric MALT lymphoma after Helicobacter pylori eradication,” Journal of Clinical Oncology, vol. 23, no. 31, pp. 8018–8024, 2005. View at Publisher · View at Google Scholar · View at PubMed
  225. M. Raderer, B. Streubel, S. Woehrer et al., “High relapse rate in patients with MALT lymphoma warrants lifelong follow-up,” Clinical Cancer Research, vol. 11, no. 9, pp. 3349–3352, 2005. View at Publisher · View at Google Scholar · View at PubMed
  226. H. Liu, H. Ye, and A. RuskoneFourmestraux, “T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication,” Gastroenterology, vol. 122, no. 5, pp. 1286–1294, 2002. View at Google Scholar
  227. H. Inagaki, T. Nakamura, C. Li et al., “Gastric MALT lymphomas are divided into three groups based on responsiveness to Helicobacter pylori eradication and detection of API2-MALT1 fusion,” American Journal of Surgical Pathology, vol. 28, no. 12, pp. 1560–1567, 2004. View at Publisher · View at Google Scholar
  228. P. Malfertheiner, F. Megraud, C. O'Morain et al., “Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report,” Gut, vol. 56, no. 6, pp. 772–781, 2007. View at Google Scholar
  229. B. F. M. Werdmuller and R. J. L. F. Loffeld, “Helicobacter pylori infection has no role in the pathogenesis of reflux esophagitis,” Digestive Diseases and Sciences, vol. 42, no. 1, pp. 103–105, 1997. View at Publisher · View at Google Scholar
  230. C. A. Fallone, A. N. Barkun, M. U. Göttke et al., “Association of Helicobacter pylori genotype with gastroesophageal reflux disease and other upper gastrointestinal diseases,” American Journal of Gastroenterology, vol. 95, no. 3, pp. 659–669, 2000. View at Publisher · View at Google Scholar
  231. R. Befrits, S. Sjöstedt, B. Ödman, H. Sörngård, and G. Lindberg, “Curing Helicobacter pylori infection in patients with duodenal ulcer does not provoke gastroesophageal reflux disease,” Helicobacter, vol. 5, no. 4, pp. 202–205, 2000. View at Publisher · View at Google Scholar
  232. E. M. El-Omar, K. Oien, A. El-Nujumi et al., “Helicobacter pylori infection and chronic gastric acid hyposecretion,” Gastroenterology, vol. 113, no. 1, pp. 15–24, 1997. View at Publisher · View at Google Scholar
  233. N. Vakil, B. Hahn, and D. McSorley, “Recurrent symptoms and gastro-oesophageal reflux disease in patients with duodenal ulcer treated for Helicobacter pylori infection,” Alimentary Pharmacology and Therapeutics, vol. 14, no. 1, pp. 45–51, 2000. View at Publisher · View at Google Scholar
  234. A. Gasbarrini, F. Franceschi, R. Tartaglione, R. Landolfi, P. Pola, and G. Gasbarrini, “Regression of autoimmune thrombocytopenia after eradication of Helicobacter pylori,” Lancet, vol. 352, no. 9131, p. 878, 1998. View at Google Scholar
  235. G. Emilia, M. Luppi, P. Zucchini et al., “Helicobacter pylori infection and chronic immune thrombocytopenic purpura: long-term results of bacterium eradication and association with bacterium virulence profiles,” Blood, vol. 110, no. 12, pp. 3833–3841, 2007. View at Publisher · View at Google Scholar · View at PubMed
  236. A. Asahi, M. Kuwana, H. Suzuki, T. Hibi, Y. Kawakami, and Y. Ikeda, “Effects of a Helicobacter pylori eradication regimen on anti-platelet autoantibody response in infected and uninfected patients with idiopathic thrombocytopenic purpura,” Haematologica, vol. 91, no. 10, pp. 1436–1437, 2006. View at Google Scholar
  237. M. Kodama, Y. Kitadai, M. Ito et al., “Immune response to CagA protein is associated with improved platelet count after Helicobacter pylori eradication in patients with idiopathic thrombocytopenic purpura,” Helicobacter, vol. 12, no. 1, pp. 36–42, 2007. View at Publisher · View at Google Scholar · View at PubMed
  238. C. Hershko, M. Ianculovich, and M. Souroujon, “A hematologist's view of unexplained iron deficiency anemia in males: impact of Helicobacter pylori eradication,” Blood Cells, Molecules and Diseases, vol. 38, no. 1, pp. 45–53, 2007. View at Publisher · View at Google Scholar · View at PubMed
  239. Y. Chen and M. J. Blaser, “Inverse associations of Helicobacter pylori with asthma and allergy,” Archives of Internal Medicine, vol. 167, no. 8, pp. 821–827, 2007. View at Publisher · View at Google Scholar · View at PubMed
  240. O. Herbarth, M. Bauer, G. J. Fritz et al., “Helicobacter pylori colonisation and eczema,” Journal of Epidemiology and Community Health, vol. 61, no. 7, pp. 638–640, 2007. View at Publisher · View at Google Scholar · View at PubMed
  241. F. Cremonini and A. Gasbarrini, “Atopy, Helicobacter pylori and the hygiene hypothesis,” European Journal of Gastroenterology and Hepatology, vol. 15, no. 6, pp. 635–636, 2003. View at Publisher · View at Google Scholar
  242. M. Kist, “Helicobacter pylori: primary antimicrobial resistance and first-line treatment strategies,” Eurosurveillance, vol. 12, no. 7, pp. E1–2, 2007. View at Google Scholar
  243. N. Wueppenhorst, H. P. Stueger, M. Kist, and E. Glocker, “Identification and molecular characterization of triple- and quadruple-resistant Helicobacter pylori clinical isolates in Germany,” Journal of Antimicrobial Chemotherapy, vol. 63, no. 4, pp. 648–653, 2009. View at Publisher · View at Google Scholar · View at PubMed
  244. P. F. Saldinger, N. Porta, P. Launois et al., “Immunization of BALB/c mice with Helicobacter urease B induces a T helper 2 response absent in Helicobacter infection,” Gastroenterology, vol. 115, no. 4, pp. 891–897, 1998. View at Publisher · View at Google Scholar
  245. T. Aebischer, D. Bumann, H. J. Epple et al., “Correlation of T cell response and bacterial clearance in human volunteers challenged with Helicobacter pylori revealed by randomised controlled vaccination with Ty21a-based Salmonella vaccines,” Gut, vol. 57, no. 8, pp. 1065–1072, 2008. View at Publisher · View at Google Scholar · View at PubMed
  246. Y. Du, A. Agnew, X.-P. Ye, P. A. Robinson, D. Forman, and J. E. Crabtree, “Helicobacter pylori and Schistosoma japonicum co-infection in a Chinese population: helminth infection alters humoral responses to H. pylori and serum pepsinogen I/II ratio,” Microbes and Infection, vol. 8, no. 1, pp. 52–60, 2006. View at Publisher · View at Google Scholar · View at PubMed
  247. M. F. Elshal, I. H. Elsayed, and I. M. El Kady, “Role of concurrent S. mansoni infection in H. pylori-associated gastritis: a flow cytometric DNA-analysis and oxyradicals correlations,” Clinica Chimica Acta, vol. 346, no. 2, pp. 191–198, 2004. View at Publisher · View at Google Scholar · View at PubMed
  248. G. L. Lorca, T. Wadström, G. Font de Valdez, and Å Ljungh, “Lactobacillus acidophilus autolysins inhibit Helicobacter pylori in vitro,” Current Microbiology, vol. 42, no. 1, pp. 39–44, 2001. View at Publisher · View at Google Scholar · View at PubMed
  249. P. D. Midolo, J. R. Lambert, R. Hull, F. Luo, and M. L. Grayson, “In vitro inhibition of Helicobacter pylori NCTC 11637 by organic acids and lactic acid bacteria,” Journal of Applied Bacteriology, vol. 79, no. 4, pp. 475–479, 1995. View at Google Scholar
  250. I. Sakamoto, M. Igarashi, K. Kimura, A. Takagi, T. Miwa, and Y. Koga, “Suppressive effect of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in humans,” Journal of Antimicrobial Chemotherapy, vol. 47, no. 5, pp. 709–710, 2001. View at Google Scholar
  251. J. Zou, J. Dong, and X. Yu, “Meta-analysis: lactobacillus containing quadruple therapy versus standard triple first-line therapy for Helicobacter pylori eradication,” Helicobacter, vol. 14, no. 5, pp. 97–107, 2009. View at Publisher · View at Google Scholar · View at PubMed