Table of Contents
Ulcers
Volume 2013, Article ID 219257, 4 pages
http://dx.doi.org/10.1155/2013/219257
Research Article

Chronic Nonhealing Wounds: Could Leg Ulcers Be Hereditary?

1Department of Medical Genetics, University of Szeged, 4 Somogyi B utca, H-6720 Szeged, Hungary
2Dermatological Research Group of the Hungarian Academy of Sciences, University of Szeged, 6 Korányi fasor, H-6720 Szeged, Hungary
3Department of Dermatology and Allergology, University of Szeged, 6 Korányi fasor, H-6720 Szeged, Hungary

Received 4 September 2012; Revised 30 January 2013; Accepted 17 February 2013

Academic Editor: Marco A. C. Frade

Copyright © 2013 Nikoletta Nagy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. G. R. Fowkes, C. J. Evans, and A. J. Lee, “Prevalence and risk factors of chronic venous insufficiency,” Angiology, vol. 52, supplement 8, pp. S5–S15, 2001. View at Google Scholar · View at Scopus
  2. L. P. Abbade, S. Lastória, H. de Almeida Rollo, and H. O. Stolf, “A sociodemographic, clinical study of patients with venous ulcer,” International Journal of Dermatology, vol. 44, no. 12, pp. 989–992, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Jebeleanu and L. Procopciuc, “G20210A prothrombin gene mutation identified in patients with venous leg ulcers,” Journal of Cellular and Molecular Medicine, vol. 5, no. 4, pp. 397–401, 2001. View at Google Scholar · View at Scopus
  4. J. Hafner, A. Kühne, B. Schär et al., “Factor V Leiden mutation in postthrombotic and non-postthrombotic venous ulcers,” Archives of Dermatology, vol. 137, no. 5, pp. 599–603, 2001. View at Google Scholar · View at Scopus
  5. N. Nagy, G. Szolnoky, G. Szabad et al., “Single nucleotide polymorphisms of the fibroblast growth factor receptor 2 gene in patients with chronic venous insufficiency with leg ulcer,” Journal of Investigative Dermatology, vol. 124, no. 5, pp. 1085–1088, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Nagy, G. Szolnoky, G. Szabad et al., “Tumor necrosis factor-α -308 Polymorphism and leg ulceration- possible association with obesity,” Journal of Investigative Dermatology, vol. 127, no. 7, pp. 1768–1769, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. H. J. Wallace, Y. K. Vandongen, and M. C. Stacey, “Tumor necrosis factor-alpha gene polymorphism associated with increased susceptibility to venous leg ulceration,” The Journal of Investigative Dermatology, vol. 126, no. 4, pp. 921–925, 2006. View at Google Scholar · View at Scopus
  8. D. Peus, S. V. Schmiedeberg, A. Pier et al., “Coagulation factor V gene mutation associated with activated protein C resistance leading to recurrent thrombosis, leg ulcers, and lymphedema: successful treatment with intermittent compression,” Journal of the American Academy of Dermatology, vol. 35, no. 2, pp. 306–309, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Gemmati, S. Tognazzo, M. L. Serino et al., “Factor XIII V34L polymorphism modulates the risk of chronic venous leg ulcer progression and extension,” Wound Repair and Regeneration, vol. 12, no. 5, pp. 512–517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. J. Ashworth, J. V. Smyth, N. Pendleton et al., “The dinucleotide (CA) repeat polymorphism of estrogen receptor beta but not the dinucleotide (TA) repeat polymorphism of estrogen receptor alpha is associated with venous ulceration,” Journal of Steroid Biochemistry and Molecular Biology, vol. 97, no. 3, pp. 266–270, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Zamboni, S. Tognazzo, M. Izzo et al., “Hemochromatosis C282Y gene mutation increases the risk of venous leg ulceration,” Journal of Vascular Surgery, vol. 42, no. 2, pp. 309–314, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Gemmati, F. Federici, L. Catozzi et al., “DNA-array of gene variants in venous leg ulcers: detection of prognostic indicators,” Journal of Vascular Surgery, vol. 50, no. 6, pp. 1444–1451, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. K. I. Cheng, S. R. Lin, L. L. Chang, J. Y. Wang, and C. S. Lai, “Association of the functional A118G polymorphism of OPRM1 in diabetic patients with foot ulcer pain,” Journal of Diabetes and its Complications, vol. 24, no. 2, pp. 102–108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. K. A. Mir, S. Pugazhendhi, M. J. Paul, A. Nair, and B. S. Ramakrishna, “Heat-shock protein 70 gene polymorphism is associated with the severity of diabetic foot ulcer and the outcome of surgical treatment,” British Journal of Surgery, vol. 96, no. 10, pp. 1205–1209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Corapcioglu, M. Sahin, R. Emral, Z. K. Celebi, O. Sener, and V. T. Gedik, “Association of the G894T polymorphism of the endothelial nitric oxide synthase gene with diabetic foot syndrome foot ulcer, diabetic complications, and comorbid vascular diseases: a Turkish case-control study,” Genetic Testing and Molecular Biomarkers, vol. 14, no. 4, pp. 483–488, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Gattringer, C. Scheurecker, R. Höpfl, and H. Müller, “Association between venous leg ulcers and sex chromosome anomalies in men,” Acta Dermato-Venereologica, vol. 90, no. 6, pp. 612–615, 2010. View at Publisher · View at Google Scholar