VLSI Design

VLSI Design / 1998 / Article

Open Access

Volume 7 |Article ID 14757 | 19 pages | https://doi.org/10.1155/1998/14757

On Ensuring Multilayer Wirability by Stretching Layouts

Received28 Jul 1995
Accepted22 Aug 1995

Abstract

Every knock-knee layout is four-layer wirable. However, there are knock-knee layouts that cannot be wired in less than four layers. While it is easy to determine whether a knock-knee layout is one-layer wirable or two-layer wirable, the problem of determining three-layer wirability of knock-knee layouts is NP-complete. A knock-knee layout may be stretched vertically (horizontally) by introducing empty rows (columns) so that it can be wired in fewer than four layers. In this paper we discuss two different types of stretching schemes. It is known that under these two stretching schemes, any knock-knee layout is three-layer wirable by stretching it up to (4/3) of the knock-knee layout area (upper bound). We show that there are knock-knee layouts that when stretched and wired in three layers under scheme I (II) require at least 1.2 (1.07563) of the original layout area. Our lower bound for the area increase factor can be used to guide the search for effective stretching-based dynamic programming three-layer wiring algorithms similar to the one presented in [8].

Copyright © 1998 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

0 Views | 0 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.