Table of Contents
VLSI Design
Volume 8, Issue 1-4, Pages 559-565

Electron Transport In One-Dimensional Magnetic Superlattices

Department of Physics and Astronomy, McMaster University, Ontario, Hamilton L8S 4M1, Canada

Copyright © 1998 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Electron transport properties of quantum wires in the presence of a periodically modulated magnetic field are investigated. For a short modulated wire, we find dips in conductance just below each mode threshold. The conductance dips are quite robust at low temperature. Increasing the number of periods of magnetic modulation can lead to the formation of minibands and gaps. The differences between the one dimensional (1D) electric superlattice and 1D magnetic superlattice are discussed. We also consider the spatial distributions of currents, which show dramatic differences between the magnetic superlattices and electric ones.