Employing a recently developed efficient cellular automaton technique for solving Boltzmann’s transport equation for realistic devices, we present a detailed study of the carrier dynamics in GaAs avalanche p-i-n (IMPATT) diodes. We find that the impact ionization in reverse bias p-i-n diodes with ultrathin (less than 50 nm) intrinsic regions is triggered by Zener tunneling rather than by thermal generation. The impact generation of hot carriers occurs mainly in the low-field junction regions rather than in the high field intrinsic zone. The calculations predict significantly more minority carriers on the n-side than on the p-side.