VLSI Design

VLSI Design / 1998 / Article
Special Issue

Computer-Aided Design for Low-Power Chips

View this Special Issue

Open Access

Volume 7 |Article ID 50491 | 17 pages | https://doi.org/10.1155/1998/50491

Exploiting Sleep Mode for Memory Partitioning and Other Applications

Abstract

Sleep mode operation and exploiting it to minimize the average power consumption are of great importance in modern VLSI circuits. In general, sleep mode refers to the mode in which part(s) of the system are idle. In this paper, we study the problem of partitioning a circuit according to the activity patterns of its elements such that circuit elements with similar activity patterns are packed into the same partition. Then a partition can be placed in sleep mode during the time intervals all elements contained in that partition are idle. We formulate the partitioning problem to exploit sleep mode operation and show that the problem is NP-complete. We present polynomial time algorithms for practical classes of the problem. Applications of the problem to memory and module partitioning and clock gating are discussed. The experimental data confirm that a careful partitioning allows upto 40% more sleep time which could be exploited to minimize the average power consumption.

Copyright © 1998 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

0 Views | 0 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.