VLSI Design

VLSI Design / 1998 / Article
Special Issue

Computational Electronics

View this Special Issue

Open Access

Volume 8 |Article ID 096170 | https://doi.org/10.1155/1998/96170

Elizabeth J. Brauer, Marek Turowski, James M. McDonough, "Additive Decomposition Applied to the Semiconductor Drift-Diffusion Model", VLSI Design, vol. 8, Article ID 096170, 7 pages, 1998. https://doi.org/10.1155/1998/96170

Additive Decomposition Applied to the Semiconductor Drift-Diffusion Model


A new numerical method for semiconductor device simulation is presented. The additive decomposition method has been successfully applied to Burgers' and Navier-Stokes equations governing turbulent fluid flow by decomposing the equations into large-scale and small-scale parts without averaging. The additive decomposition (AD) technique is well suited to problems with a large range of time and/or space scales, for example, thermal-electrical simulation of power semiconductor devices with large physical size. Furthermore, AD adds a level of parallelization for improved computational efficiency. The new numerical technique has been tested on the 1-D drift-diffusion model of a p-i-n diode for reverse and forward biases. Distributions of φ, n and p have been calculated using the AD method on a coarse large-scale grid and then in parallel small-scale grid sections. The AD results agreed well with the results obtained with a traditional one-grid approach, while potentially reducing memory requirements with the new method.

Copyright © 1998 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

 PDF Download Citation Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.