VLSI Design

VLSI Design / 1999 / Article
Special Issue

International Workshop on Quantum Theory

View this Special Issue

Open Access

Volume 9 |Article ID 38517 | 7 pages | https://doi.org/10.1155/1999/38517

Modeling Crystallization Dynamics when the Avrami Model Fails

Received13 Aug 1997
Revised01 Dec 1998

Abstract

Recent experiments on the formation of crystalline CO2 from a newly discovered binary phase consisting of CO2 and C2H2 at 90° K fail to be adequately simulated by Avrami equations. The purpose of this note is to develop an alternative to the Avrami model which can make accurate predictions for these experiments. The new model uses empirical approximations to the distribution densities of the volumes of three-dimensional Voronoi cells defined by Poisson-generated crystallization kernels (nuclei). Inside each Voronoi cell, the growth of the crystal is assumed to be linear in diameter (i.e., cubic in volume) until the cell is filled by the CO2 crystals and the C2H2 (thought of as a waste product). The cumulative growth curve is computed by averaging these individual growth curves with respect to the distribution density of the volumes of the Voronoi cells. Agreement with the experiments is excellent.

Copyright © 1999 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

0 Views | 0 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.