Abstract

Charge transport has been simulated in a novel two quantum well InGaN/GaN light emitting diode. Asymmetric tunnelling for holes and electrons has been used to enhance the quantum efficiency of the diode. A self-consistent solution of Poisson and Schrödinger equations has been used to obtain the band profile, energy levels and wave functions. Transport in the bulk nitride has been simulated by a drift diffusion model. Lattice strain and the resulting piezoelectric field effects have been shown to influence the device characteristics.