Table of Contents Author Guidelines Submit a Manuscript
VLSI Design
Volume 2008 (2008), Article ID 437879, 9 pages
Research Article

A Dependable Microelectronic Peptide Synthesizer Using Electrode Data

1Testable Design and Test of Integrated Systems Group, Centre of Telematics and Information Technology (CTIT), 7500AE Enschede, The Netherlands
2Microelectronics Laboratory (LIRMM), University of Montpellier, 34392 Montpellier Cedex 5, France
3Centre for Microsystems Engineering, University of Lancaster (ULAN), Lancaster LA1 4YW, UK

Received 31 October 2007; Revised 28 February 2008; Accepted 23 May 2008

Academic Editor: José Machado da Silva

Copyright © 2008 H. G. Kerkhoff et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The research in the area of microelectronic fluidic devices for biomedical applications is rapidly growing. As faults in these devices can have serious personal implications, a system is presented which includes fault tolerance with respect to the synthesized biomaterials (peptides). It can employ presence and purity detection of peptide droplets via current (charge) tests of control electrodes or impedance (phase) measurements using direct sensing electrodes near the peptide collector area. The commercial multielectrode array performs better in pure and impure detection of peptides in impedance and phase. Our two-electrode X-MEF case shows slightly poorer results. In both cases the phase is the best choice for contents detection. If there are presence or purity problems, the location is marked, and repeated peptide synthesis at another collector site is initiated.