Table of Contents Author Guidelines Submit a Manuscript
VLSI Design
Volume 2010, Article ID 670476, 9 pages
http://dx.doi.org/10.1155/2010/670476
Review Article

Run-Length-Based Test Data Compression Techniques: How Far from Entropy and Power Bounds?—A Survey

1Department of Electronics and Communication, Nirma University, Ahmedabad 382481, India
2Space Application Center, ISRO, Ahmedabad 380015, India

Received 23 July 2009; Revised 17 November 2009; Accepted 11 January 2010

Academic Editor: Avi Ziv

Copyright © 2010 Usha S. Mehta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Mehta, N. Devashrayee, and K. Dasgupta, “Survey of test data compression techniques emphasizing code based schemes,” in Proceedings of the 12th IEEE Euromicro Conference on Digital System Design (DSD '09), pp. 617–620, Patras, Greece, August 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Rajski, J. Tyszer, M. Kassab et al., “Embedded deterministic test for low cost manufacturing test,” in Proceedings IEEE International Test Conference (ITC '02), pp. 301–310, Baltimore, Md, USA, October 2002.
  3. B. Koenemann, C. Barnhart, B. Keller et al., “A SmartBIST variant with guaranteed encoding,” in Proceedings of the 10th Asian Test Symposium (ATS '01), pp. 325–330, Kyoto, Japan, November 2001.
  4. http://www.reed-electronics.com/tmworld.
  5. N. Tauba, “Survey of test vector compression techniques,” IEEE Transaction Design & Test of Computers, pp. 294–303, 2006. View at Google Scholar
  6. A. Jas and N. Touba, “Test vector compression via cyclical scan chains and its application to testing core-based designs,” in Proceedings of the IEEE International Test Conference (ITC '98), pp. 458–464, IEEE CS, Washington, DC, USA, October 1998.
  7. A. Chandra and K. Chakrabarty, “Test data compression for system-on-a-chip using Golomb codes,” in Proceedings of the 18th IEEE VLSI Test Symposium (VTS '00), pp. 113–120, Montreal, Canada, May 2000.
  8. L. Li and K. Chakrabarty, “On using exponential—Golomb codes and subexponential codes for system-on-chip test data compression,” Journal of Electronic Testing, vol. 20, no. 6, 2004. View at Google Scholar
  9. A. Chandra and K. Chakrabarty, “Efficient test data compression and decompression for system-on-a-chip using internal scan chains and Golomb coding,” in Proceedings of the Conference on Design, Automation and Test in Europe (DATE '01), Munich, Germany, March 2001.
  10. A. Chandra and K. Chakrabarty, “Frequency-directed run-length (FDR) codes with application to system-on-a-chip test data compression,” in Proceedings of the 19th IEEE VLSI Test Symposium (VTS '01), pp. 42–47, Marina Del Rey, Calif, USA, March 2001.
  11. A. Chandra and K. Chakrabarty, “Test data compression and test resource partitioning for system-on-a-chip using frequency-directed run-length (FDR) codes,” IEEE Transactions on Computers, vol. 52, no. 8, pp. 1076–1088, 2003. View at Google Scholar
  12. A. El-Maleh and R. Al-Abaji, “Extended frequency-directed run-length code with improved application to system-on-a-chip test data compression,” in Proceedings of the 8th IEEE International Conference on Electronic Circuits and Systems (ICECS '02), vol. 2, pp. 449–452, Dubrovnik, Croatia, September 2002.
  13. A. Chandra and K. Chakrabarty, “Reduction of SOC test data volume, scan power and testing time using alternating run-length codes,” in Proceedings of the 39th Design Automation Conference (DAC '02), pp. 673–678, New Orleans, La, USA, June 2002.
  14. S. Hellebrand and A. Würtenberger, “Alternating run-length coding—a technique for improved test data compression,” in Proceedings of the 3rd IEEE International Workshop on Test Resource Partitioning (TRP '02), Baltimore, Md, USA, October 2002.
  15. P. Gonciari, B. Al-Hashimi, and N. Nicolici, “Variable-length input Huffman coding for system-on-a-chip test,” IEEE Transactions on Computer-Aided Design, vol. 22, no. 6, pp. 783–796, 2003. View at Google Scholar
  16. P. Gonciari, B. Al-Hashimi, and N. Nicolici, “Improving compression ratio, area overhead, and test application time for system-on-a-chip test data compression/decompression,” in Proceedings of the Conference on Design, Automation and Test in Europe (DATE '02), Paris, France, March 2002.
  17. C. Giri, B. Rao, and S. Chattopadhyay, “Test data compression by spilt-VIHC (SVIHC),” in Proceedings of the International Conference on Computing: Theory and Applications (ICCTA '07), Kolkata, India, March 2007.
  18. J. Feng and G. Li, “A test data compression method for system-on-a-chip,” in Proceedings of the 4th IEEE International Symposium on Electronic Design, Test and Applications (DELTA '08), Hong Kong, January 2008.
  19. S. Kajihara et al., “On combining pinpoint test set relaxation and run-length codes for reducing test data volume,” in Proceedings of the 21st International Conference on Computer Design (ICCD '03), San Jose, Calif, USA, October 2003.
  20. X. Ruan and R. Katti, “Data-independent pattern run-length compression for testing embedded cores in SoCs,” IEEE Transactions on Computers, vol. 56, no. 4, pp. 545–556, 2007. View at Google Scholar
  21. H. Fang, C. Tong, and X. Cheng, “RunBasedReordering: a novel approach for test data compression and scan power,” in Proceedings of the Conference on Asia South Pacific Design Automation (ASP-DAC '07), Yokohama, Japan, January 2007.
  22. W. Zhan, H. Liang, F. Shi et al., “Test data compression scheme based on variable-to-fixed-plus-variable-length coding,” Journal of Systems Architecture, vol. 53, no. 11, pp. 877–888, 2007. View at Google Scholar
  23. G. Sheng et al., “Combined partial test vector reuse and FDR coding for two dimensional SoC test compression,” in Proceedings of the International Conference on Internet Computing in Science and Engineering (ICICSE '08), Harbin, China, January 2008.
  24. K. Balakrishnan and N. Touba, “Relating entropy theory to test data compression,” in Proceedings of the European Test Symposium (ETS '04), Corsica, France, May 2004.
  25. A. Chandra et al., “How effective are compression codes for reducing test data volume?” in Proceedings of the VLSI Test Symposium (VTS '02), Monterey, Calif, USA, May 2002.
  26. R. Sankaralingam, R. Orugani, and N. Touba, “Static compaction techniques to control scan vector power dissipation,” in Proceedings of the IEEE VLSI Test Symposium (VTS '00), pp. 35–40, Montreal, Canada, May 2000.