Table of Contents Author Guidelines Submit a Manuscript
VLSI Design
Volume 2011 (2011), Article ID 756561, 8 pages
http://dx.doi.org/10.1155/2011/756561
Research Article

Weighted Transition Based Reordering, Columnwise Bit Filling, and Difference Vector: A Power-Aware Test Data Compression Method

1PG (VLSI Design), Nirma University, Ahmedabad 382481, India
2Indian Institute of Space Science & Technology, Tiruvanthapuram, India

Received 29 March 2011; Revised 14 May 2011; Accepted 29 July 2011

Academic Editor: Yangdong Deng

Copyright © 2011 Usha Mehta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Hirech, “Test cost and test power conflicts: EDA perspective,” in Proceedings of the 28th IEEE VLSI Test Symposium (VTS '10), p. 126, Santa Cruz, Calif, USA, January 2010.
  2. N. A. Touba, “Survey of test vector compression techniques,” IEEE Design and Test of Computers, vol. 23, no. 4, pp. 294–303, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Jas and N. A. Touba, “Test vector decompression via cyclical scan chains and its application to testing core-based designs,” in Proceedings of the IEEE International Test Conference (ITC '98), pp. 458–464, October 1998.
  4. A. Chandra and K. Chakrabarty, “Test data compression for system-on-a-chip using Golomb codes,” in Proceedings of the 18th IEEE VLSI Test Symposium (VTS '00), pp. 113–120, May 2000.
  5. A. Chandra and K. Chakrabarty, “Test data compression and test resource partitioning for system-on-a-chip using frequency-directed run-length (FDR) codes,” IEEE Transactions on Computers, vol. 52, no. 8, pp. 1076–1088, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. H. El-Maleh and R. H. Al-Abaji, “Extended frequency-directed run-length code with improved application to system-on-a-chip test data compression,” in Proceedings of the 9th IEEE International Conference on Electronics, Circuits and Systems (ICECS '02), vol. 2, pp. 449–452, September 2002. View at Publisher · View at Google Scholar
  7. A. Chandra and K. Chakrabarty, “Reduction of SOC test data volume, scan power and testing time using alternating run-length codes,” in Proceedings of the 39th Conference on Design Automation, pp. 673–678, June 2002.
  8. S. Hellebrand and A. Wrtenberger, “Alternating run length coding : a technique for improved test data compression,” in Proceedings of the 3rd IEEE International Workshop on Test Resource Partitioning, Baltimore, MD, USA, October 2002.
  9. U. S. Mehta, K. S. Dasgupta, and N. M. Devashrayee, “Run-length-based test data compression techniques: how far from entropy and power bounds?—a survey,” VLSI Design, vol. 2010, Article ID 670476, 9 pages, 2010. View at Publisher · View at Google Scholar
  10. U. S. Mehta, K. S. Dasgupta, and N. M. Devashrayee, “Combining unspecified test data bit filling methods and run length based codes to estimate compression, power and area overhead,” in Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS '10), pp. 40–43, Kuala-Lumpur, Malaysia, December, 2010. View at Publisher · View at Google Scholar
  11. H. Fang, T. Chenguang, and C. Xu, “RunBasedReordering: a novel approach for test data compression and scan power,” in Proceedings of the IEEE International Conference on Asia and South Pacific Design Automation (ASP-DAC '07), pp. 732–737, Yokohama, Japan, January 2007. View at Publisher · View at Google Scholar
  12. U. S. Mehta, K. S. Dasgupta, and N. M. Devashrayee, “Hamming distance based 2-D reordering with power efficient don't care bit filling: optimizing the test data compression method,” in Proceedings of the 9th International Symposium on System-on-Chip (SoC '10), pp. 1–7, Tampare, Finland, September 2010. View at Publisher · View at Google Scholar
  13. U. S. Mehta, K. S. Dasgupta, and N. M. Devashrayee, “Hamming distance based reordering and column wise bit stuffing with difference vector: a better scheme for test data compression with run length based codes,” in Proceedings of the 23rd International Conference on VLSI Design (VLSID '10), pp. 33–38, Bangalore, India, 2010.
  14. P. Girard, C. Landrault, S. Pravossoudovitch, and D. Severac, “Reducing power consumption during test application by test vector ordering,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '98), pp. 296–299, June 1998.
  15. K. Roy, R. K. Roy, and A. Chatterjee, “Stress testing of combinational VLSI circuits using existing test sets,” in Proceedings of the IEEE International Symposium on VLSI Technology, Systems, and Applications (ISVLSI ’95), pp. 93–98, June 1995.
  16. I. P. V. Dabholkar, S. Chakravarty, and S. Reddy, “Techniques for minimizing power dissipation in scan and combinational circuits during test application,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 17, no. 12, pp. 1325–1333, 1998. View at Google Scholar · View at Scopus
  17. H. N. J. M. P. Flores, J. Costa, H. Neto, J. Monteiro, and J. Marques-Silva, “Assignment and reordering of incompletely specified pattern sequences targetting minimum power dissipation,” in Proceedings of the 12th International Conference on VLSI Design, pp. 37–41, January 1999.
  18. S. Chattopadhyay and N. Choudhary, “Genetic algorithm based approach for low power combinational circuit testing,” in Proceedings of the 16th International Conference on VLSI Design, pp. 552–559, January 2003. View at Publisher · View at Google Scholar
  19. H. Hashempour and F. Lombardi, “Evaluation of heuristic techniques for test vector ordering,” in Proceedings of the ACM Great lakes Symposium on VLSI (GLSVLSI '04), pp. 96–99, January 2004.
  20. A. S. D. Whitley, A. Sokolov, and Y. Malaiya, “Dynamic power minimization during combinational circuit testing as a traveling salesman problem,” in Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 1088–1095, September 2005.
  21. S. Roy, I. S. Gupta, and A. Pal, “Artificial intelligence approach to test vector reordering for dynamic power reduction during VLSI testing,” in Proceedings of the IEEE Region 10 Conference (TENCON '08), pp. 1–6, Hyderabad, India, November 2008. View at Publisher · View at Google Scholar
  22. Y. L. J. Wang, J. Shao, and Y. Huang, “Using ant colony optimization for test vector reordering,” in proceedings of the IEEE Symposium on Industrial Electronics and Applications (ISIEA '09), pp. 52–55, Kuala Lumpur, Malaysia, October 2009. View at Publisher · View at Google Scholar
  23. S. K. Kumar, S. Kaundinya, and S. Chattopadhyay, “Particle swarm optimization based vector reordering for low power testing,” in proceedings of the 2nd International Conference on Computing, Communication and Networking Technologies (ICCCNT '10), pp. 1–5, Karur, India, July 2010. View at Publisher · View at Google Scholar
  24. U. S. Mehta, K. S. Dasgupta, and N. M. Devashrayee, “Artificial intelligence based scan vector reordering for capture power minimization,” in Proceedings of the IEEE International Symposium on VLSI (ISVLSI '11), June 2011.
  25. S. J. Wang, Y. T. Chen, and K. S. M. Li, “Low capture power test generation for launch-off-capture transition test based on don't-care filling,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '07), pp. 3683–3686, May 2007.
  26. S. Kundu and S. Chattopadhyay, “Efficient don't care filling for power reduction during testing,” in Proceedings of the International Conference on Advances in Recent Technologies in Communication and Computing (ARTCom '09), pp. 319–323, October 2009. View at Publisher · View at Google Scholar
  27. Z. Chen, J. Feng, D. Xiang, and B. Yin, “Scan chain configuration based X filling for low power and high quality testing,” IET Journal On Computers and Digital Techniques, vol. 4, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar
  28. J. L. Yang and Q. Xu, “State-sensitive X-filling scheme for scan capture power reduction,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 7, Article ID 4544872, pp. 1338–1343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. T. K. Maiti and S. Chattopadhyay, “Don't care filling for power minimization in VLSI circuit testing,” in Proceedings of THE IEEE International Symposium on Circuits and Systems (ISCAS '08), pp. 2637–2640, Seattle, Wash, May 2008. View at Publisher · View at Google Scholar
  30. A. Chandra and K. Chakrabarty, “Frequency-directed run-length (FDR) codes with application to system-on-a-chip test data compression,” in Proceedings of the 19th IEEE VLSI Test Symposium, pp. 42–47, May 2001.