Table of Contents Author Guidelines Submit a Manuscript
VLSI Design
Volume 2012 (2012), Article ID 413747, 14 pages
http://dx.doi.org/10.1155/2012/413747
Research Article

An Efficient Multi-Core SIMD Implementation for H.264/AVC Encoder

Department of Biophysical and Electronic Engineering, University of Genova, Via Opera Pia 11 A, 16145 Genova, Italy

Received 18 November 2011; Revised 20 February 2012; Accepted 3 March 2012

Academic Editor: Muhammad Shafique

Copyright © 2012 M. Bariani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. “VC-1 Compressed Video Bitstream Format and Decoding Process,” SMPTE 421M-2006, SMPTE Standard, 2006.
  2. T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. G. J. Sullivan, P. Topiwala, and A. Luthra, “The H.264/AVC Advanced Video Coding Standard: Overview and Introduction to the Fidelity Range Extensions,” in Applications of Digital Image Processing XXVII, Proceedings of SPIE, August, 2004.
  4. D. Marpe, T. Wiegand, and S. Gordon, “H.264/MPEG4-AVC fidelity range extensions: tools, profiles, performance, and application areas,” in IEEE International Conference on Image Processing (ICIP '05), pp. 593–596, September 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–1120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Joint Collaborative Team on Video Coding (JCT-VC), “WD4: Working Draft 4 of High-Efficiency Video Coding,” 6th Meeting, Torino, Italy, July, 2011.
  7. J. Probell, “Architecture considerations for multi-format programmable video processors,” Journal of Signal Processing Systems, vol. 50, no. 1, pp. 33–39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Koziri, D. Zacharis, I. Katsavounidis, and N. Bellas, “Implementation of the AVS video decoder on a heterogeneous dual-core SIMD processor,” IEEE Transactions on Consumer Electronics, vol. 57, no. 2, pp. 673–681, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Sayed, W. Badawy, and G. Jullien, “Towards an H.264/AVC HW/SW integrated solution: an efficient VBSME architecture,” IEEE Transactions on Circuits and Systems II, vol. 55, no. 9, pp. 912–916, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Rintaluoma and O. Silvén, “SIMD performance in software based mobile video coding,” in 10th International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (IC-SAMOS '10), pp. 79–85, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Lv, L. Ma, and H. Liu, “Analysis and optimization of the UMHexagons algorithm in H.264 based on SIMD,” in 2nd International Conference on Communication Systems, Networks and Applications (ICCSNA '10), pp. 239–244, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Zhou, E. Q. Li, and Y.-K. Chen, “Implementation of H.264 decoder on general-purpose processors with media instructions,” in Image and Video Communications and Processing, Santa Clara, Calif, USA, January 2003.
  13. J. Lee, S. Moon, and W. Sung, “H.264 decoder optimization exploiting SIMD instructions,” in IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS '04), pp. 1149–1152, December 2004. View at Scopus
  14. W. Lo, D. Lun, W. Siu, W. Wang, and J. Song, “Improved SIMD architecture for high performance video processors,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 12, pp. 1769–1783, 2011. View at Google Scholar
  15. D. Talla, L. K. John, and D. Burger, “Bottlenecks in multimedia processing with SIMD style extensions and architectural enhancements,” IEEE Transactions on Computers, vol. 52, no. 8, pp. 1015–1031, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Shen, H. He, Y. Zhang, and Y. Sun, “A Video Specific Instruction Set Architecture for ASIP design,” VLSI Design, vol. 2007, Article ID 58431, 7 pages, 2007. View at Publisher · View at Google Scholar
  17. M. Shafique, L. Bauer, and J. Henkel, “Optimizing the H.264/AVC video encoder application structure for reconfigurable and application-specific platforms,” Journal of Signal Processing Systems, vol. 60, no. 2, pp. 183–210, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood, “Lx: a technology platform for customizable VLIW embedded processing,” in 27th Annual International Symposium on Computer Architecture (ISCA '00), pp. 203–213, June 2000. View at Scopus
  19. J. Fisher, P. Faraboschi, and C. Young, “VLIW processors: from blue sky to best buy,” IEEE Solid-State Circuits Magazine, vol. 1, no. 2, pp. 10–17, 2009. View at Google Scholar
  20. N. Coste, H. Garavel, H. Hermanns, F. Lang, R. Mateescu, and W. Serwe, “Ten Years of Performance Evaluation for Concurrent Systems using CADP,” in 4th International Symposium on Leveraging Applications of Formal Methods, Verification and Validation ISoLA, Heraklion, Greece, 2010.
  21. D. Pandini, G. Desoli, and A. Cremonesi, “Computing and design for software and silicon manufacturing,” in IFIP International Conference on Very Large Scale Integration (VLSI '07), pp. 122–127, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Desoli and E. Filippi, “An outlook on the evolution of mobile terminals: from monolithic to modular multi-radio, multi-application platforms,” IEEE Circuits and Systems Magazine, vol. 6, no. 2, pp. 17–29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Benini, “P2012: a many-core platform for 10Gops/mm2 multimedia computing,” in 21st IEEE International Symposium on Rapid System Prototyping, Fairfax, Va, USA, June 2010.
  24. C. Silvano, W. Fornaciari, S. Crespi Reghizzi et al., “2PARMA: parallel paradigms and run-time management techniques for many-core architectures,” in IEEE Annual Symposium on VLSI, pp. 494–499, July 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Mucci, L. Vanzolini, I. Mirimin et al., “Implementation of parallel LFSR-based applications on an adaptive DSP featuring a Pipelined Configurable Gate Array,” in Design, Automation and Test in Europe (DATE '08), pp. 1444–1449, March 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Paulin, “Programming challenges & solutions for multi-processor SoCs: An industrial perspective,” in Design Automation Conference (DAC '11), June 2011.
  27. A. Kumar, D. Alfonso, L. Pezzoni, and G. Olmo, “A complexity scalable H.264/AVC encoder for mobile terminals,” in European Signal Processing Conference (EUSIPCO '08), Lausanne, Switzerland, August 2008.
  28. C. Y. Chen, C. T. Huang, Y. H. Chen, and L. G. Chen, “Level C+ data reuse scheme for motion estimation with corresponding coding orders,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 4, pp. 553–558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Zatt, M. Shafique, F. Sampaio, L. Agostini, S. Bampi, and J. Henkel, “Run-Time Adaptive Energy-Aware Motion and Disparity Estimation in Multiview Video Coding,” in 48th Design Automation Conference (DAC '11), pp. 1026–1031, San Diego, Calif, USA, June 2011.
  30. M. Bariani, I. Barbieri, D. Brizzolara, and M. Raggio, “H.264 implementation on SIMD VLIW cores,” STreaming Day 2007, Genova, Italy.
  31. C. S. Lubobya, M. E. Dlodlo, G. de Jager, and K. L. Ferguson, “SIMD implementation of integer DCT and hadamard transforms in H.264/AVC encoder,” in Proceedings of the IEEE AFRICON, pp. 1–5, September 2011.