Table of Contents Author Guidelines Submit a Manuscript
VLSI Design
Volume 2012, Article ID 948957, 7 pages
http://dx.doi.org/10.1155/2012/948957
Research Article

Low-Complexity Hardware Interleaver/Deinterleaver for IEEE 802.11a/g/n WLAN

1ASIC and System Department, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
2DSP Software Department, Datang Mobile Communications Equipment Co., Ltd., Beijing 100083, China

Received 27 June 2011; Revised 15 December 2011; Accepted 30 December 2011

Academic Editor: Sungjoo Yoo

Copyright © 2012 Zhen-dong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. IEEE Std., “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: high-speed physical layer in the 5 GHz band,” IEEE Std. 802.11a-1999, The IEEE Standards Association, New York, NY, USA, September 1999. View at Google Scholar
  2. IEEE Std., “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: further higher data rate extension in the 2.4 GHz band,” IEEE Std. 802.11g-2003, The IEEE Standards Association, New York, NY, USA, June 2003. View at Google Scholar
  3. IEEE Std., “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: enhancements for higher throughput,” IEEE Std. 802.11n-2009, The IEEE Standards Association, New York, NY, USA, October 2009. View at Google Scholar
  4. T. Paul and T. Ogunfunmi, “Evolution, insights and challenges of the PHY layer for the emerging ieee 802.11n amendment,” IEEE Communications Surveys and Tutorials, vol. 11, no. 4, pp. 131–150, 2009. View at Publisher · View at Google Scholar
  5. J. Terry and J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide, chapter 3, SAMS, Indianapolis, Ind, USA, 2002.
  6. V. D. Nguyen and H. Kuchenbecker, “Block interleaving for soft decision viterbi decoding in OFDM systems,” in Proceedings of the IEEE 54th Vehicular Technology Conference (VTC '01), pp. 470–474, Atlantic City, NJ, USA, October 2001.
  7. S. Ramseier, “Shuffling bits in time and frequency—an optimum interleaver for OFDM,” in Proceedings of the International Conference on Communications (ICC'03), pp. 3418–3422, Anchorage, Alaska, USA, May 2003. View at Scopus
  8. X. F. Wang, Y. R. Shayan, and M. Zeng, “On the code and interleaver design of broadband OFDM Systems,” IEEE Communications Letters, vol. 8, no. 11, pp. 653–655, November 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Huaning, O. Xuemei, and N. Chiu, “Interleaver design for MIMOOFDM based wireless LAN,” in Proceedings of the IEEE Wireless Communication and Networking Conference (WCNC '06), pp. 1825–1829, Las Vegas, Nev, USA, April 2006.
  10. T. Eric and L. Dake, “A hardware architecture for a multi-mode block interleaver,” in Proceedings of the IEEE International Conference on Circuits and Systems for Communications (ICCSC '04), Moscow, Russia, June 2004.
  11. C. Yu, M. H. Yen, P. A. Hsiung, and S. J. Chen, “Design of a high-speed block interleaving/deinterleaving architecture for wireless communication applications,” in Proceedings of the International Conference on Consumer Electronics (ICCE '09), Las Vegas, Nev, USA, January 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. K. Upadhyaya and S. K. Sanyal, “Design of a novel FSM based reconfigurable multimode interleaver for WLAN application,” in Proceedings of the International Conference on Devices and Communications (ICDeCom '11), Mesra, India, February 2011. View at Publisher · View at Google Scholar
  13. Z.-D. Zhang, B. Wu, Y.-X. Zhu, and Y.-M. Zhou, “Design and implementation of a multi-mode interleaver/deinterleaver for MIMO OFDM systems,” in Proceedings of the 8th IEEE International Conference on ASIC (ASICON '09), pp. 513–516, Changsha, China, October 2009. View at Publisher · View at Google Scholar
  14. A. Rizwan and L. Dake, “Low complexity hardware interleaver for MIMOOFDM based wireless LAN,” in Proceedings of the IEEE International Symposiumon Circuits and Systems (ISCAS '09), vol. 2, pp. 1747–1750, Taipei, Taiwan, May 2009. View at Publisher · View at Google Scholar
  15. J. Son, I.-G. Lee, and S.-K. Lee, “ASIC implementation and verification of MIMO-OFDM transceiver for wireless lan,” in Proceedings of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07), pp. 1–5, Athens, Greece, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Y.-W. Wu, P. Ting, and H.-P. Ma, “A high speed interleaver for emerging wireless communications,” in Proceedings of the International Conference on Wireless Networks, Communications and Mobile Computing (IWCMC '05), pp. 1192–1197, Maui, Hawaii, USA, June 2005. View at Publisher · View at Google Scholar