Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2010, Article ID 517060, 6 pages
http://dx.doi.org/10.4061/2010/517060
Research Article

Antibiotic Resistance in Staphylococcus aureus and Coagulase Negative Staphylococci Isolated from Goats with Subclinical Mastitis

Dipartimento di Biologia Animale, UniversitĂ  di Sassari, via Vienna 2, 07100 Sassari, Italy

Received 9 September 2009; Accepted 7 January 2010

Academic Editor: Carlo Nebbia

Copyright © 2010 Salvatore Virdis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Contreras, C. Luengo, A. Sanchez, and J. C. Corrales, “The role of intramammary pathogens in dairy goats,” Livestock Production Science, vol. 79, no. 2-3, pp. 273–283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Poutrel, R. De Crémoux, M. Ducelliez, and D. Verneau, “Control of intramammary infections in goats: impact on somatic cell counts,” Journal of Animal Science, vol. 75, no. 2, pp. 566–570, 1997. View at Google Scholar · View at Scopus
  3. E. P. L. De Santis, A. Mencarelli, M. P. Nieddu et al., “Efficacia della somministrazione endomammaria di cloxacillina benzatina per il trattamento delle infezioni intramammarie dell'ovino nel corso dell'asciutta,” Large Animals Review, vol. 7, pp. 39–47, 2001. View at Google Scholar
  4. B. Walther, A. W. Friedrich, L. Brunnberg, L. H. Wieler, and A. Lübke-Becker, “Methicillin-resistant Staphylococcus aureus (MRSA) in veterinary medicine: a “new emerging pathogen”?” Berliner und Munchener Tierarztliche Wochenschrift, vol. 119, no. 5-6, pp. 222–232, 2006. View at Google Scholar · View at Scopus
  5. C. Schnellmann, V. Gerber, A. Rossano et al., “Presence of new mecA and mph(C) variants conferring antibiotic resistance in Staphylococcus spp. isolated from the skin of horses before and after clinic admission,” Journal of Clinical Microbiology, vol. 44, no. 12, pp. 4444–4454, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. E. P. L. De Santis, A. Mureddu, R. Mazzette, C. Scarano, and M. Bes, “Detection of enterotoxins and TSST-1 genes in S. aureus isolates from sheep subclinical mastitis,” in Proceedings of the 4th IDF International Mastitis Conference, pp. 410–504, Maastricht, The Netherlands, June 2005.
  7. E. Vautor, H. Carsenti-Dellamonica, M. Sabah, G. Mancini, M. Pépin, and P. Dellamonica, “Characterization of Staphylococcus aureus isolates recovered from dairy sheep farms (agr group, adherence, slime, resistance to antibiotics),” Small Ruminant Research, vol. 72, no. 2-3, pp. 197–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Bochev and N. Russenova, “Resistance of Staphylococcus spp strains isolated from goat with sub clinical mastitis,” Bulgarian Journal of Veterinary Medicine, vol. 8, pp. 109–118, 2005. View at Google Scholar
  9. G. O. Adegoke and M. O. Ojo, “Biochemical characterization of staphylococci isolated from goats,” Veterinary Microbiology, vol. 7, no. 5, pp. 463–470, 1982. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Bedidi-Madani, Y. Richard, E. Borges, and C. Lerondelle, “Identification and susceptibility to antibiotics of coagulase negative staphylococci isolated from goat milk,” Revue de Médecine Vétérinaire, vol. 143, pp. 539–545, 1992. View at Google Scholar
  11. P. Moroni, F. Vellere, M. Antonini, G. Pisoni, G. Ruffo, and S. Carli, “Antibiotic susceptibility of coagulase-negative staphylococci isolated from goats' milk,” International Journal of Antimicrobial Agents, vol. 23, no. 6, pp. 637–640, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Moroni, G. Pisoni, M. Antonini et al., “Subclinical mastitis and antimicrobial susceptibility of Staphylococcus caprae and Staphylococcus epidermidis isolated from two Italian goat herds,” Journal of Dairy Science, vol. 88, no. 5, pp. 1694–1704, 2005. View at Google Scholar · View at Scopus
  13. C. Wray and J.-C. Gnanou, “Antibiotic resistance monitoring in bacteria of animal origin: analysis of national monitoring programmes,” International Journal of Antimicrobial Agents, vol. 14, no. 4, pp. 291–294, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. Clinical and Laboratory Standards Institute, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 7th edition, 2006, Document M7-A7.
  15. G. A. Donovan, C. A. Risco, and J. K. Shearer, “Assessment of the mammary system,” The Veterinary Clinics of North America, vol. 8, no. 2, pp. 361–372, 1992. View at Google Scholar · View at Scopus
  16. R. V. Lachica, C. Genigeorgis, and P. D. Hoeprich, “Metachromatic agar-diffusion methods for detecting staphylococcal nuclease activity,” Applied Microbiology, vol. 21, no. 4, pp. 585–587, 1971. View at Google Scholar · View at Scopus
  17. FIL-IDF, Enumeration of Somatic Cells, Standard, no. 148A, FIL-IDF International Dairy Federation, Brussels, Belgium, 1995.
  18. M. G. Ribeiro, J. Megid, D. R. Meira, V. M. Lara, and A. Cortez, “Mastite caprina. Estudo microbiológico, físico-químico e do diagnóstico através de provas indiretas,” Biológico, vol. 61, pp. 27–33, 1999. View at Google Scholar
  19. National Committee for Clinical Laboratory Standards, Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard, National Committee for Clinical Laboratory Standards, Wayne, Pa, USA, 2nd edition, 2002, Document M31-A2.
  20. Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 2006, Document M100-S16.
  21. C. Thornsberry, P. J. Burton, Y. C. Yee, J. L. Watts, and R. J. Yancey Jr., “The activity of a combination of penicillin and novobiocin against bovine mastitis pathogens: development of a disk diffusion test,” Journal of Dairy Science, vol. 80, no. 2, pp. 413–421, 1997. View at Google Scholar · View at Scopus
  22. National Committee for Clinical Laboratory Standards, Development of in Vitro Susceptibility Testing Criteria and Quality Control Parameters for Veterinary Antimicrobial Agents; Approved Guideline, National Committee for Clinical Laboratory Standards, Wayne, Pa, USA, 2nd edition, 2002, Document M37-A2.
  23. K. Murakami, W. Minamide, K. Wada, E. Nakamura, H. Teraoka, and S. Watanabe, “Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction,” Journal of Clinical Microbiology, vol. 29, no. 10, pp. 2240–2244, 1991. View at Google Scholar · View at Scopus
  24. F. Vandenesch, T. Naimi, M. C. Enright et al., “Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence,” Emerging Infectious Diseases, vol. 9, no. 8, pp. 978–984, 2003. View at Google Scholar · View at Scopus
  25. B. Poutrel, R. De Crémoux, R. Pillet, V. Heuchel, and M. Ducelliez, “Relations entre statut infectieux des mamelles et numèrations cellulaires du lait de chèvre,” in Somatic Cells and Milk of Small Ruminants, R. Rubino, Ed., pp. 61–64, Wageningen Academic, Wageningen, The Netherlands, 1996. View at Google Scholar
  26. A. Ebrahimi, S. Lotfalian, and S. Karimi, “Drug resistance in isolated bacteria from milk of sheep and goats with subclinical mastitis in Shahrekord district,” Iranian Journal of Veterinary Research, vol. 8, pp. 76–79, 2007. View at Google Scholar
  27. P. Moroni, G. Pisoni, C. Vimercati et al., “Characterization of Staphylococcus aureus isolated from chronically infected dairy goats,” Journal of Dairy Science, vol. 88, no. 10, pp. 3500–3509, 2005. View at Google Scholar · View at Scopus
  28. E. R. da Silva, A. P. Siqueira, J. C. D. Martins, W. P. B. Ferreira, and N. da Silva, “Identification and in vitro antimicrobial susceptibility of Staphylococcus species isolated from goat mastitis in the Northeast of Brazil,” Small Ruminant Research, vol. 55, no. 1–3, pp. 45–49, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. P. D. D. Alves, J. A. McCulloch, S. Even et al., “Molecular characterisation of Staphylococcus aureus strains isolated from small and large ruminants reveals a host rather than tissue specificity,” Veterinary Microbiology, vol. 137, no. 1-2, pp. 190–195, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. N. H. Georgopapadakou, “Penicillin-binding proteins and bacterial resistance to β-lactams,” Antimicrobial Agents and Chemotherapy, vol. 37, no. 10, pp. 2045–2053, 1993. View at Google Scholar · View at Scopus
  31. M. Deinhofer and A. Pernthaner, “Staphylococcus spp. as mastitis-related pathogens in goat milk,” Veterinary Microbiology, vol. 43, no. 2-3, pp. 161–166, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. E. P. L. De Santis, S. Virdis, R. Mazzette, M. P. Nieddu, S. Farina, and A. Corona, “Sensibilità nei confronti degli antibiotici di stafilococchi coagulasi negativi isolati in mastiti subcliniche dell'ovino,” in Proceedings of the 14th S.I.P.A.O.C. National Congress, vol. 14, pp. 79–82, Vietri sul Mare, Italy, 2000.