Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2011, Article ID 180206, 5 pages
http://dx.doi.org/10.4061/2011/180206
Review Article

Oxidative Stress in Dog with Heart Failure: The Role of Dietary Fatty Acids and Antioxidants

1ENVT, 2 allée des Cèdres 66330 Cabestany, France
2ENVT, INRA, UMR 1089, Université de Toulouse, 31076 Toulouse, France

Received 30 December 2010; Accepted 14 February 2011

Academic Editor: Cristina Castillo Rodríguez

Copyright © 2011 Emmanuelle Sagols and Nathalie Priymenko. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Freeman and J. E. Rush, “Maladies cardiovasculaires : influence de l'alimentation,” in Encyclopédie de la Nutrition Clinique Canine. Royal Canin, P. Pibot, V. Biourge, and D. Elliot, Eds., pp. 316–347, 2006. View at Google Scholar
  2. F. L. Rosenfeldt, S. Pepe, A. Linnane et al., “Coenzyme Q protects the aging heart against stress: studies in rats, human tissues, and patients,” Annals of the New York Academy of Sciences, vol. 959, pp. 355–359, 2002. View at Google Scholar · View at Scopus
  3. T. Ide, H. Tsutsui, S. Kinugawa et al., “Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium,” Circulation Research, vol. 85, no. 4, pp. 357–363, 1999. View at Google Scholar · View at Scopus
  4. J. A. Byrne, D. J. Grieve, A. C. Cave, and A. M. Shah, “Oxidative stress and heart failure,” Archives des Maladies du Coeur et des Vaisseaux, vol. 96, no. 3, pp. 214–221, 2003. View at Google Scholar · View at Scopus
  5. S. Orrenius, “Mechanisms of oxidative cell damage,” in Free Radicals: From Basic Science to Medicine, G. Poli, E. Albano, and M. U. Dianzani, Eds., pp. 47–64, MCBU, Bern, Switzerland, 1993. View at Google Scholar
  6. J. M. Hare, “Oxidative stress and apoptosis in heart failure progression,” Circulation Research, vol. 89, no. 3, pp. 198–200, 2001. View at Google Scholar · View at Scopus
  7. L. M. Freeman, J. E. Rush, J. J. Kehayias et al., “Nutritional alterations and the effect of fish oil supplementation in dogs with heart failure,” Journal of Veterinary Internal Medicine, vol. 12, no. 6, pp. 440–448, 1998. View at Google Scholar · View at Scopus
  8. R. Luostarinen, R. Wallin, and T. Saldeen, “Dietary (n-3) fatty acids increase superoxide dismutase activity and decrease thromboxane production in the rat heart,” Nutrition Research, vol. 17, no. 1, pp. 163–175, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Goraca, A. Piechota, and H. Huk-Kolega, “Effect of alpha-lipoic acid on LPS-induced oxidative stress in the heart,” Journal of Physiology and Pharmacology, vol. 60, no. 1, pp. 61–68, 2009. View at Google Scholar · View at Scopus
  10. M. Feinberg, J. C. Favier, and J. Ireland-Ripert, “Répertoire général des aliments, Table de compositon des corps gras (tome 1),” in Technique et Documentation, INRA, Ciquel-Regal, 1987. View at Google Scholar
  11. R. C. Wander, J. A. Hall, J. L. Gradin, S. H. Du, and D. E. Jewell, “The ratio of dietary (n-6) to (n-3) fatty acids influences immune system function, eicosanoid metabolism, lipid peroxidation and vitamin E status in aged dogs,” Journal of Nutrition, vol. 127, no. 6, pp. 1198–1205, 1997. View at Google Scholar · View at Scopus
  12. P. H. Langsjoen and A. M. Langsjoen, “Overview of the use of coenzyme Q10 in cardiovascular disease,” BioFactors, vol. 9, no. 2-4, pp. 273–284, 1999. View at Google Scholar · View at Scopus
  13. K. A. Weant and K. M. Smith, “The role of coenzyme Q10 in heart failure,” Annals of Pharmacotherapy, vol. 39, no. 9, pp. 1522–1526, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. S. Joo, “Coenzyme Q10 and cardiovascular health: to take or not to take, that is the question,” Nutrition Bytes, vol. 10, p. 4, 2005. View at Google Scholar
  15. P. J. Quinn, J. P. Fabisiak, and V. E. Kagan, “Expansion of antioxidant function of vitamin E by coenzyme Q,” BioFactors, vol. 9, no. 2–4, pp. 149–154, 1999. View at Google Scholar · View at Scopus
  16. O. Hano, S. L. Thompson-Gorman, J. L. Zweier, and E. G. Lakatta, “Coenzyme Q enhances cardiac functional and metabolic recovery and reduces Ca2+ overload during postischemic reperfusion,” American Journal of Physiology, vol. 266, no. 6, pp. H2174–H2181, 1994. View at Google Scholar · View at Scopus
  17. C. Weber, A. Bysted, and G. Hølmer, “Coenzyme Q10 in the diet-daily intake and relative bioavailability,” Molecular Aspects of Medicine, vol. 18, pp. S251–S254, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Kubo, K. Fuj II, T. Kawabe, S. Matsumoto, H. Kishida, and K. Hosoe, “Food content of ubiquinol-10 and ubiquinone-10 in the Japanese diet,” Journal of Food Composition and Analysis, vol. 21, no. 3, pp. 199–210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Berthiaume, P. J. Oliveira, M. W. Fariss, and K. B. Wallace, “Dietary vitamin E decreases doxorubicin-induced oxidative stress without preventing mitochondrial dysfunction,” Cardiovascular Toxicology, vol. 5, no. 3, pp. 257–267, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Flores-Mateo, A. Navas-Acien, R. Pastor-Barriuso, and E. Guallar, “Selenium and coronary heart disease: a meta-analysis,” American Journal of Clinical Nutrition, vol. 84, no. 4, pp. 762–773, 2006. View at Google Scholar · View at Scopus
  21. K. L. Gross, K. J. Wedekind, and C. S. Cowell, “Nutriments,” in Nutrition Clinique des Animaux de Compagnie, M. S. Hand, C. D. Thatcher, R. L. Remillard, and P. Roudebush, Eds., pp. 87–109, Mark Morris Institute, Turin, Italy, 4th edition, 2000. View at Google Scholar
  22. C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, “Polyphenols: food sources and bioavailability,” American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 727–747, 2004. View at Google Scholar · View at Scopus
  23. P. Stanely Mainzen Prince and M. Karthick, “Preventive effect of rutin on lipids, lipoproteins and ATPase in normal and isoproterenol-induced myocardial infarction in rats,” Journal of Biochemical and Molecular Toxicology, vol. 21, pp. 1–6, 2007. View at Google Scholar
  24. S. Mirwa, K. Yamazaki, S.-H. Hyon, and M. Komeda, “A novel method of “preparative” myocardial protection using green tea polyphenols in oral uptake,” Interactive CardioVascular and Thoracic Surgery, vol. 3, pp. 612–615, 2004. View at Google Scholar
  25. J. Nečas, L. Bartošíková, T. Florian et al., “Protective effects of the flavonoids osajin and pomiferin on heart ischemia— reperfusion,” Ceska a Slovenska Farmacie, vol. 55, no. 4, pp. 168–174, 2006. View at Google Scholar · View at Scopus
  26. M. Ikizler, N. Erkasap, S. Dernek, T. Kural, and Z. Kaygisiz, “Dietary polyphenol quercetin protects rat hearts during reperfusion: enhanced antioxidant capacity with chronic treatment,” Anadolu Kardiyoloji Dergisi, vol. 7, no. 4, pp. 404–410, 2007. View at Google Scholar · View at Scopus
  27. A. Scalbert and G. Williamson, “Dietary intake and bioavailability of polyphenols,” Journal of Nutrition, vol. 130, no. 8, pp. 2073S–2085S, 2000. View at Google Scholar · View at Scopus