Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2011, Article ID 410470, 11 pages
http://dx.doi.org/10.4061/2011/410470
Review Article

Perspectives on the History of Bovine TB and the Role of Tuberculin in Bovine TB Eradication

Department of Agriculture, Fisheries and Food, Agriculture House, Kildare Street, Dublin 2, Ireland

Received 14 January 2011; Accepted 16 February 2011

Academic Editor: Mitchell V. Palmer

Copyright © 2011 Margaret Good and Anthony Duignan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Brosch, S. V. Gordon, M. Marmiesse et al., “A new evolutionary scenario for the Mycobacterium tuberculosis complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3684–3689, 2002. View at Publisher · View at Google Scholar · View at PubMed
  2. W. M. Prodinger, A. Brandstätter, L. Naumann et al., “Characterization of Mycobacterium caprae isolates from Europe by mycobacterial interspersed repetitive unit genotyping,” Journal of Clinical Microbiology, vol. 43, no. 10, pp. 4984–4992, 2005. View at Publisher · View at Google Scholar · View at PubMed
  3. R. G. Hewinson, H. M. Vordermeier, N. H. Smith, and S. V. Gordon, “Recent advances in our knowledge of Mycobacterium bovis: a feeling for the organism,” Veterinary Microbiology, vol. 112, no. 2–4, pp. 127–139, 2006. View at Publisher · View at Google Scholar · View at PubMed
  4. Z. Cvetnic, V. Katalinic-Jankovic, B. Sostaric et al., “Mycobacterium caprae in cattle and humans in Croatia,” International Journal of Tuberculosis and Lung Disease, vol. 11, no. 6, pp. 652–658, 2007. View at Google Scholar
  5. M. T. Javed, A. Aranaz, L. de Juan et al., “Improvement of spoligotyping with additional spacer sequences for characterization of Mycobacterium bovis and M. caprae isolates from Spain,” Tuberculosis, vol. 87, no. 5, pp. 437–445, 2007. View at Publisher · View at Google Scholar · View at PubMed
  6. E. L. Duarte, M. Domingos, A. Amado, and A. Botelho, “Spoligotype diversity of Mycobacterium bovis and Mycobacterium caprae animal isolates,” Veterinary Microbiology, vol. 130, no. 3-4, pp. 415–421, 2008. View at Publisher · View at Google Scholar · View at PubMed
  7. L. M. O'Reilly and C. J. Daborn, “The epidemiology of Mycobacterium bovis infections in animals and man: a review,” Tubercle and Lung Disease, vol. 76, supplement 1, pp. 1–46, 1995. View at Google Scholar
  8. A. L. Michel, M. L. Coetzee, D. F. Keet et al., “Molecular epidemiology of Mycobacterium bovis isolates from free-ranging wildlife in South African game reserves,” Veterinary Microbiology, vol. 133, no. 4, pp. 335–343, 2009. View at Publisher · View at Google Scholar · View at PubMed
  9. D. J. O'Brien, S. M. Schmitt, D. E. Berry et al., “Estimating the true prevalence of Mycobacterium bovis in free-ranging elk in Michigan,” Journal of Wildlife Diseases, vol. 44, no. 4, pp. 802–810, 2008. View at Google Scholar
  10. K. C. VerCauteren, T. C. Atwood, T. J. DeLiberto et al., “Sentinel-based surveillance of coyotes to detect bovine tuberculosis, Michigan,” Emerging Infectious Diseases, vol. 14, no. 12, pp. 1862–1869, 2008. View at Publisher · View at Google Scholar
  11. J. A. Drewe, A. K. Foote, R. L. Sutcliffe, and G. P. Pearce, “Pathology of Mycobacterium bovis Infection in Wild Meerkats (Suricata suricatta),” Journal of Comparative Pathology, vol. 140, no. 1, pp. 12–24, 2009. View at Publisher · View at Google Scholar · View at PubMed
  12. I. W. Esple, T. M. Hlokwe, N. C. Van Gey Pittius et al., “Pulmonary infection due to Mycobacterium bovis in a black rhinoceros (Diceros bicomis minor) in South Africa,” Journal of Wildlife Diseases, vol. 45, no. 4, pp. 1187–1193, 2009. View at Google Scholar
  13. M. G. Candela, E. Serrano, C. Martinez-Carrasco et al., “Coinfection is an important factor in epidemiological studies: the first serosurvey of the aoudad (Ammotragus lervia),” European Journal of Clinical Microbiology and Infectious Diseases, vol. 28, no. 5, pp. 481–489, 2009. View at Publisher · View at Google Scholar
  14. J. Pérez, J. Calzada, L. León-Vizcaíno, M. J. Cubero, J. Velarde, and E. Mozos, “Tuberculosis in an Iberian lynx (Lynx pardina),” Veterinary Record, vol. 148, no. 13, pp. 414–415, 2001. View at Google Scholar
  15. World Organisation for Animal Health (OIE), “Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2009. Chapter 2.4.7: Bovine tuberculosis adopted,” May 2009, http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04.07_BOVINE_TB.pdf.
  16. P. A. LoBue, D. A. Enarson, and C. O. Thoen, “Tuberculosis in humans and animals: an overview,” International Journal of Tuberculosis and Lung Disease, vol. 14, no. 9, pp. 1075–1078, 2010. View at Google Scholar
  17. C. Thoen, P. LoBue, and I. De Kantor, “The importance of Mycobacterium bovis as a zoonosis,” Veterinary Microbiology, vol. 112, no. 2-4, pp. 339–345, 2006. View at Publisher · View at Google Scholar · View at PubMed
  18. R. De La Rua-Domenech, “Human Mycobacterium bovis infection in the United Kingdom: incidence, risks, control measures and review of the zoonotic aspects of bovine tuberculosis,” Tuberculosis, vol. 86, no. 2, pp. 77–109, 2006. View at Publisher · View at Google Scholar · View at PubMed
  19. P. Doran, J. Carson, E. Costello, and S. J. More, “An outbreak of tuberculosis affecting cattle and people on an Irish dairy farm, following the consumption of raw milk,” Irish Veterinary Journal, vol. 62, no. 6, pp. 390–397, 2009. View at Google Scholar
  20. M. C. Hlavsa, P. K. Moonan, L. S. Cowan et al., “Human tuberculosis due to Mycobacterium bovis in the United States, 1995-2005,” Clinical Infectious Diseases, vol. 47, no. 2, pp. 168–175, 2008. View at Publisher · View at Google Scholar · View at PubMed
  21. I. N. De Kantor, P. A. LoBue, and C. O. Thoen, “Human tuberculosis caused by Mycobacterium bovis in the United States, Latin America and the Caribbean,” International Journal of Tuberculosis and Lung Disease, vol. 14, no. 11, pp. 1369–1373, 2010. View at Google Scholar
  22. O. Cosivi, J. M. Grange, C. J. Daborn et al., “Zoonotic tuberculosis due to Mycobacterium bovis in developing countries,” Emerging Infectious Diseases, vol. 4, no. 1, pp. 59–70, 1998. View at Google Scholar
  23. R. Cicero, H. Olivera, A. Hernández-Solis, E. Ramírez-Casanova, and A. Escobar-Gutiérrez, “Frequency of Mycobacterium bovis as an etiologic agent in extrapulmonary tuberculosis in HIV-positive and -negative mexican patients,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 28, no. 5, pp. 455–460, 2009. View at Publisher · View at Google Scholar · View at PubMed
  24. Y. K. Amdekar, “Tuberculosis—persistent threat to human health,” Indian Journal of Pediatrics, vol. 72, no. 4, pp. 333–338, 2005. View at Google Scholar
  25. J. T. Evans, E. G. Smith, A. Banerjee et al., “Cluster of human tuberculosis caused by Mycobacterium bovis: evidence for person-to-person transmission in the UK,” The Lancet, vol. 369, no. 9569, pp. 1270–1276, 2007. View at Publisher · View at Google Scholar · View at PubMed
  26. P. D. O. Davies, Clinical Tuberculosis, Chapman & Hall, Boca Raton, Fla, USA, 1st edition, 1994.
  27. P. R. Ingram, P. Bremner, T. J. Inglis, R. J. Murray, and D. V. Cousins, “Zoonotic tuberculosis: on the decline,” Communicable Diseases Intelligence, vol. 34, no. 3, pp. 339–341, 2010. View at Google Scholar
  28. J. K. Schönfeld, “Human-to-human spread of infection by M. bovis,” Tubercle, vol. 63, no. 2, p. 143, 1982. View at Google Scholar
  29. S. Bilal, M. Iqbal, P. Murphy, and J. Power, “Human bovine tuberculosis—remains in the differential,” Journal of Medical Microbiology, vol. 59, no. 11, pp. 1379–1382, 2010. View at Publisher · View at Google Scholar
  30. S. Godreuil, E. Jeziorski, A. L. Bañuls, T. Fraisse, P. Van De Perre, and M. L. Boschiroli, “Intrafamilial cluster of pulmonary tuberculosis due to Mycobacterium bovis of the African 1 clonal complex,” Journal of Clinical Microbiology, vol. 48, no. 12, pp. 4680–4683, 2010. View at Publisher · View at Google Scholar
  31. FSAI, ZoonoticTuberculosis and Food Safety, Food Safety Authority of Ireland, Dublin, Ireland, 2nd edition, 2008.
  32. G. S. Dean, S. G. Rhodes, M. Coad et al., “Minimum infective dose of Mycobacterium bovis in cattle,” Infection and Immunity, vol. 73, no. 10, pp. 6467–6471, 2005. View at Publisher · View at Google Scholar · View at PubMed
  33. J. Francis, Tuberculosis in Animals and Man: A Study in Comparative Pathology, Cassell & Co. Ltd., London, UK, 1958.
  34. H. Posthaus, T. Bodmer, L. Alves et al., “Accidental infection of veterinary personnel with Mycobacterium tuberculosis at necropsy: a case study,” Veterinary Microbiology, vol. 149, no. 3-4, pp. 374–380, 2011. View at Publisher · View at Google Scholar
  35. J. Francis, Bovine Tuberculosis: Including a Contrast with Human Tuberculosis, Staples Press, London, UK, 1947.
  36. M. O. Ozyigit, S. Senturk, and A. Akkoc, “Suspected congenital generalised tuberculosis in a newborn calf,” Veterinary Record, vol. 160, no. 9, pp. 307–308, 2007. View at Google Scholar
  37. A. Nolan and J. W. Wilesmith, “Tuberculosis in badgers (Meles meles),” Veterinary Microbiology, vol. 40, no. 1-2, pp. 179–191, 1994. View at Publisher · View at Google Scholar
  38. V. C. Jha, Y. Morita, M. Dhakal et al., “Isolation of Mycobacterium spp. from milking buffaloes and cattle in Nepal,” Journal of Veterinary Medical Science, vol. 69, no. 8, pp. 819–825, 2007. View at Publisher · View at Google Scholar
  39. K. Srivastava, D. S. Chauhan, P. Gupta et al., “Isolation of Mycobacterium bovis & M. tuberculosis from cattle of some farms in north India—possible relevance in human health,” Indian Journal of Medical Research, vol. 128, no. 1, pp. 26–31, 2008. View at Google Scholar
  40. J. M. Griffin and L. A. Dolan, “The role of cattle-to-cattle transmission of Mycobacterium bovis in the epidemiology of tuberculosis in cattle in the Republic of Ireland: a review,” Irish Veterinary Journal, vol. 48, pp. 228–234, 1995. View at Google Scholar
  41. T. McCorry, A. O. Whelan, M. D. Welsh et al., “Shedding of Mycobacterium bovis in the nasal mucus of cattle infected experimentally with tuberculosis by the intranasal and intratracheal routes,” Veterinary Record, vol. 157, no. 20, pp. 613–618, 2005. View at Google Scholar
  42. D. Menzies, “Effect of Treatment on Contagiousness of Patients with Active Pulmonary Tuberculosis,” Infection Control and Hospital Epidemiology, vol. 18, no. 8, pp. 582–586, 1997. View at Google Scholar
  43. A. Rouillon, S. Perdrizet, and R. Parrot, “Transmission of tubercle bacilli: the effects of chemotherapy,” Tubercle, vol. 57, no. 4, pp. 275–299, 1976. View at Google Scholar
  44. T. W. A. Little, P. F. Naylor, and J. W. Wilesmith, “Laboratory study of Mycobacterium bovis infection in badgers and calves,” Veterinary Record, vol. 111, no. 24, pp. 550–557, 1982. View at Google Scholar
  45. F. J. Olea-Popelka, E. Costello, P. White et al., “Risk factors for disclosure of additional tuberculous cattle in attested-clear herds that had one animal with a confirmed lesion of tuberculosis at slaughter during 2003 in Ireland,” Preventive Veterinary Medicine, vol. 85, no. 1-2, pp. 81–91, 2008. View at Publisher · View at Google Scholar · View at PubMed
  46. J. W. Wilesmith and D. R. Williams, “Tuberculosis lesions in reactor cows,” The Veterinary record, vol. 119, no. 2, p. 51, 1986. View at Google Scholar
  47. M. A. Schoenbaum, B. H. Espe, and B. Behring, “Epidemic of bovine tuberculosis cases originating from an infected beef herd in Oklahoma, USA,” Preventive Veterinary Medicine, vol. 13, no. 2, pp. 113–120, 1992. View at Google Scholar
  48. R. S. Williams and W. A. Hoy, “The Viability of Bovinus (Bovinus) on Pasture Land, in Stored Faeces and in Liquid Manure,” Journal of Hygiene, vol. 30, pp. 413–419, 1930. View at Google Scholar
  49. B. J. Duffield and D. A. Young, “Survival of Mycobacterium bovis in defined environmental conditions,” Veterinary Microbiology, vol. 10, no. 2, pp. 193–197, 1984. View at Publisher · View at Google Scholar
  50. M. V. Palmer, “Tuberculosis: a reemerging disease at the interface of domestic animals and wildlife,” Current Topics in Microbiology and Immunology, vol. 315, pp. 195–215, 2007. View at Publisher · View at Google Scholar
  51. L. A. L. Corner, “The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: how to assess the risk,” Veterinary Microbiology, vol. 112, no. 2–4, pp. 303–312, 2006. View at Publisher · View at Google Scholar · View at PubMed
  52. S. J. More and M. Good, “The tuberculosis eradication programme in Ireland: a review of scientific and policy advances since 1988,” Veterinary Microbiology, vol. 112, no. 2-4, pp. 239–251, 2006. View at Publisher · View at Google Scholar · View at PubMed
  53. A. I. Ward, J. Judge, and R. J. Delahay, “Farm husbandry and badger behaviour: opportunities to manage badger to cattle transmission of Mycobacterium bovis?” Preventive Veterinary Medicine, vol. 93, no. 1, pp. 2–10, 2010. View at Publisher · View at Google Scholar
  54. N. E. Tweddle and P. Livingstone, “Bovine tuberculosis control and eradication programs in Australia and New Zealand,” Veterinary Microbiology, vol. 40, no. 1-2, pp. 23–39, 1994. View at Publisher · View at Google Scholar
  55. G. Wobeser, “Bovine Tuberculosis in Canadian wildlife: an updated history review article compte rendu,” Canadian Veterinary Journal, vol. 50, no. 11, pp. 1169–1176, 2009. View at Google Scholar
  56. A. Parra, A. García, N. F. Inglis et al., “An epidemiological evaluation of Mycobacterium bovis infections in wild game animals of the Spanish Mediterranean ecosystem,” Research in Veterinary Science, vol. 80, no. 2, pp. 140–146, 2006. View at Publisher · View at Google Scholar · View at PubMed
  57. C. Gortázar, M. J. Torres, J. Vicente et al., “Bovine tuberculosis in Doñana Biosphere Reserve: the role of wild ungulates as disease reservoirs in the last Iberian lynx strongholds,” PLoS ONE, vol. 3, no. 7, Article ID e2776, 2008. View at Publisher · View at Google Scholar · View at PubMed
  58. A. L. Michel, R. G. Bengis, D. F. Keet et al., “Wildlife tuberculosis in South African conservation areas: implications and challenges,” Veterinary Microbiology, vol. 112, no. 2-4, pp. 91–100, 2006. View at Publisher · View at Google Scholar · View at PubMed
  59. B. Radunz, “Surveillance and risk management during the latter stages of eradication: experiences from Australia,” Veterinary Microbiology, vol. 112, no. 2-4, pp. 283–290, 2006. View at Publisher · View at Google Scholar · View at PubMed
  60. T. J. Ryan, P. G. Livingstone, D. S.L. Ramsey et al., “Advances in understanding disease epidemiology and implications for control and eradication of tuberculosis in livestock: the experience from New Zealand,” Veterinary Microbiology, vol. 112, pp. 211–219, 2006. View at Publisher · View at Google Scholar · View at PubMed
  61. R. M. Anderson and W. Trewhella, “Population dynamics of the badger (Meles meles) and the epidemiology of bovine tuberculosis (Mycobacterium bovis),” Philosophical Transactions of the Royal Society of London, vol. 310, no. 1145, pp. 327–381, 1985. View at Google Scholar
  62. J. M. Grange and C. H. Collins, “Bovine tubercle bacilli and disease in animals and man,” Epidemiology and Infection, vol. 99, no. 2, pp. 221–234, 1987. View at Google Scholar
  63. J. B. Buxton and R. E. Glover, “Tuberculin tests in cattle,” A.R.C. Report Series 4, Privy Council Agricultural Research Council, London, UK, 1939. View at Google Scholar
  64. J. N. Ritchie, “Tuberculois,” in Diseases due to Bacteria, A. W. Stableforth and I. A. Galloway, Eds., vol. 2, pp. 713–744, Buterworths, London, UK, 1959. View at Google Scholar
  65. L. A. Baisden, A. Larsen, and T. H. Vardaman, “Relative sensitivity of different skin areas of cattle to intradermal tests,” American Journal of Veterinary Research, vol. 12, no. 45, pp. 273–275, 1951. View at Google Scholar
  66. A. B. Paterson, “Tuberculois,” in Diseases due to Bacteria, A. W. Stableforth and I. A. Galloway, Eds., vol. 2, pp. 671–687, Buterworths, London, UK, 1959. View at Google Scholar
  67. M. Good, T. A. Clegg, E. Costello, and S. J. More, “The comparative performance of the single intradermal test and the single intradermal comparative tuberculin test in Irish cattle, using tuberculin PPD combinations of differing potencies,” The Veterinary Journal. In press.
  68. M. L. Monaghan, M. L. Doherty, J. D. Collins, J. F. Kazda, and P. J. Quinn, “The tuberculin test,” Veterinary Microbiology, vol. 40, no. 1-2, pp. 111–124, 1994. View at Publisher · View at Google Scholar · View at Scopus
  69. R. J. North and YU. J. Jung, “Immunity to tuberculosis,” Annual Review of Immunology, vol. 22, pp. 599–623, 2004. View at Publisher · View at Google Scholar · View at PubMed
  70. J. P. Caffrey, “Status of bovine tuberculosis eradication programmes in Europe,” Veterinary Microbiology, vol. 40, no. 1-2, pp. 1–4, 1994. View at Publisher · View at Google Scholar
  71. F. J. Reviriego Gordejo and J. P. Vermeersch, “Towards eradication of bovine tuberculosis in the European Union,” Veterinary Microbiology, vol. 112, no. 2-4, pp. 101–109, 2006. View at Publisher · View at Google Scholar · View at PubMed
  72. European Commission, “Council Directive of 26 June 1964 on animal health problems affecting intra-Community trade in bovine animals and swine (64/432/EEC, with later amendments). Office for Official Publications of the European Communities, Consolidated legislation (CONSLEG),” 2009, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1964L0432:20091218:EN:PDF.
  73. M. Good, I. Higgins, and P. Maher, “The tuberculin test—a safe means to test a cattle population for bovine tuberculosis,” Irish Veterinary Journal, vol. 60, no. 11, pp. 680–684, 2007. View at Google Scholar
  74. I. W. Lesslie and C. N. Hebert, “The use of dilute tuberculins for testing cattle,” The British veterinary journal, vol. 121, no. 9, pp. 427–436, 1965. View at Google Scholar
  75. L. M. O'Reilly, “Field trials to determine a suitable injection dose of bovine PPD tuberculin for the diagnosis of bovine tuberculosis in naturally infected cattle,” Developments in Biological Standardization, vol. 58, pp. 695–763, 1986. View at Google Scholar
  76. L. M. O'Reilly and B. N. MacClancy, “A comparison of the accuracy of a human and a bovine tuberculin PPD for testing cattle with a comparative cervical test,” Irish Veterinary Journal, vol. 29, no. 4, pp. 63–70, 1975. View at Google Scholar
  77. L. M. O’Reilly and B. N. Mac Clancy, “Estimation of the sensitivity, specificity and predictive value of the intradermal tuberculin test,” Irish Veterinary Journal, vol. 32, pp. 127–128, 1978. View at Google Scholar
  78. R. Cooney, J. Kazda, J. Quinn, B. Cook, K. Müller, and M. Monaghan, “Environmental mycobacteria in Ireland as a source of non-specific sensitisation to tuberculins,” Irish Veterinary Journal, vol. 50, no. 6, pp. 370–373, 1997. View at Google Scholar
  79. H. G. Lamont, “Tuberculin testing,” The Veterinary Record, vol. 59, no. 32, pp. 407–409, 1973. View at Google Scholar
  80. European Commission, “Directive of the European Parliament and of the Council, of 6 November 2001 on the Community code relating to veterinary medicinal products (2001/82/EC with later amendments). Office for Official Publications of the European Communities, Consolidated legislation (CONSLEG),” 2009, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2001L0082:20090807:EN:PDF.
  81. J. Haagsma and A. Eger, “Quality testing of tuberculins and its practical consequences for the diagnosis of bovine tuberculosis,” in Proceedings of the 2nd International Conference on Animal Tuberculosis in Africa and the Middle-East, Rabat, Morocco, October 1995.
  82. I. Davidson, “Laboratory assay methods for bovine tuberculin PPD (report of the Expert Group on Veterinary Sera and Vaccines of the European Pharmacopoeia Commission),” Developments in Biological Standardization, vol. 58, pp. 607–616, 1986. View at Google Scholar
  83. R. Dobbelaer, L. M. O'Reilly, A. Genicot, and J. Haagsma, “The potency of bovine PPD tuberculins in guinea-pigs and in tuberculous cattle,” Journal of Biological Standardization, vol. 11, no. 3, pp. 213–220, 1983. View at Google Scholar
  84. M. Good, T. A. Clegg, F. Murphy, and S. J. More, “The comparative performance of the single intradermal comparative tuberculin test in Irish cattle, using tuberculin PPD combinations from different manufacturers,” Veterinary Microbiology. In press. View at Publisher · View at Google Scholar
  85. J. Haagsma, L. M. O'Reilly, R. Dobbelaer, and T. M. Murphy, “A comparison of the relative potencies of various bovine PPD tuberculins in naturally infected tuberculous cattle,” Journal of Biological Standardization, vol. 10, no. 4, pp. 273–284, 1982. View at Google Scholar
  86. J. Haagsma, “Potency testing of bovine tuberculins,” Developments in Biological Standardization, vol. 58, pp. 689–694, 1986. View at Google Scholar
  87. World Health Organisation (WHO), “Requirements for biological substances no. 16, annex 1: requirements for tuberculins,” Tech. Rep. 745, WHO, Geneva, Switzerland, 1987, http://whqlibdoc.who.int/trs/WHO_TRS_745.pdf.
  88. D. Bakker, A. Eger, J. Mcnair et al., “Comparison of commercially available PPDs: practical considerations for diagnosis and control of bovine tuberculosis,” in Proceedings of the 4th International Conference on Mycobacterium bovis (poster), Dublin, Ireland, August 2005.
  89. A. G. Karlson, “Non-specific or cross-sensitivity reactions to tuberculin in cattle,” in Advances in Veterinary Science, vol. 7, pp. 148–153, Academic Press, London, UK, 1962. View at Google Scholar
  90. B. H. Rushford, “Investigations into the problem of non-specific reactors to the single caudal fold tuberculin test in Victorian dairy cattle,” Australian Veterinary Journal, vol. 40, pp. 406–411, 1964. View at Google Scholar
  91. S. J. More, “What is needed to eradicate bovine tuberculosis successfully: an Ireland perspective,” Veterinary Journal, vol. 180, no. 3, pp. 275–278, 2009. View at Publisher · View at Google Scholar
  92. M. Coad, D. Clifford, S. G. Rhodes, R. G. Hewinson, H. M. Vordermeier, and A. O. Whelan, “Repeat tuberculin skin testing leads to desensitisation in naturally infected tuberculous cattle which is associated with elevated interleukin-10 and decreased interleukin-1 beta responses,” Veterinary research, vol. 41, no. 2, p. 14, 2010. View at Google Scholar
  93. M. L. Doherty, M. L. Monaghan, H. F. Bassett, and P. J. Quinn, “Effect of a recent injection of purified protein derivative on diagnostic tests for tuberculosis in cattle infected with Mycobacterium bovis,” Research in Veterinary Science, vol. 58, no. 3, pp. 217–221, 1995. View at Publisher · View at Google Scholar
  94. E. Gormley, M. B. Doyle, T. Fitzsimons, K. McGill, and J. D. Collins, “Diagnosis of Mycobacterium bovis infection in cattle by use of the gamma-interferon (Bovigam) assay,” Veterinary Microbiology, vol. 112, no. 2-4, pp. 171–179, 2006. View at Publisher · View at Google Scholar · View at PubMed
  95. M. Coad, S. H. Downs, P. A. Durr et al., “Blood-based assays to detect Mycobacterium bovis-infected cattle missed by tuberculin skin testing,” Veterinary Record, vol. 162, no. 12, pp. 382–384, 2008. View at Google Scholar
  96. H. M. Vordermeier, A. Whelan, P. J. Cockle, L. Farrant, N. Palmer, and R. G. Hewinson, “Use of synthetic peptides derived from the antigens ESAT-6 and CFP-10 for differential diagnosis of bovine tuberculosis in cattle,” Clinical and Diagnostic Laboratory Immunology, vol. 8, no. 3, pp. 571–578, 2001. View at Publisher · View at Google Scholar · View at PubMed
  97. J. M. Pollock, M. D. Welsh, and J. McNair, “Immune responses in bovine tuberculosis: towards new strategies for the diagnosis and control of disease,” Veterinary Immunology and Immunopathology, vol. 108, no. 1-2, pp. 37–43, 2005. View at Publisher · View at Google Scholar · View at PubMed
  98. C. Whelan, E. Shuralev, G. O'Keeffe et al., “Multiplex immunoassay for serological diagnosis of Mycobacterium bovis infection in cattle,” Clinical and Vaccine Immunology, vol. 15, no. 12, pp. 1834–1838, 2008. View at Publisher · View at Google Scholar · View at PubMed
  99. W. D. Hueston, “Science, politics and animal health policy: epidemiology in action,” Preventive Veterinary Medicine, vol. 60, no. 1, pp. 3–12, 2003. View at Publisher · View at Google Scholar
  100. L. King, “Impacting policy through science and education,” Preventive Veterinary Medicine, vol. 62, no. 3, pp. 185–192, 2004. View at Publisher · View at Google Scholar
  101. J. G. Greis and D. N. Wear, “Conducting science in the public eye,” Journal of Forestry, vol. 100, no. 7, pp. 46–49, 2002. View at Google Scholar
  102. J. Haagsma, “Tuberculosis and tuberculin,” in “Strictly Scientific and Practical Sense”. A century of the Central Veterinary Institute in the Netherlands 1904—2004, P. Verhoef, J. M. van Leeuwen, and P. H. Bool, Eds., Erasmus Publishing, Rotterdam, The Netherlands, 2007. View at Google Scholar
  103. L. A. L. Corner, E. Costello, S. Lesellier, D. O'Meara, and E. Gormley, “Vaccination of European badgers (Meles meles) with BCG by the subcutaneous and mucosal routes induces protective immunity against endobronchial challenge with Mycobacterium bovis,” Tuberculosis, vol. 88, no. 6, pp. 601–609, 2008. View at Publisher · View at Google Scholar · View at PubMed
  104. S. Lesellier, L. Corner, E. Costello et al., “Immunological responses and protective immunity in BCG vaccinated badgers following endobronchial infection with Mycobacterium bovis,” Vaccine, vol. 27, no. 3, pp. 402–409, 2009. View at Publisher · View at Google Scholar · View at PubMed
  105. M. L. Bermingham, S. J. More, M. Good, A. R. Cromie, I. M. Higgins, and D. P. Berry, “Genetic correlations between measures of Mycobacterium bovis infection and economically important traits in Irish Holstein-Friesian dairy cows,” Journal of Dairy Science, vol. 93, no. 11, pp. 5413–5422, 2010. View at Publisher · View at Google Scholar
  106. S. Brotherstone, I. M. S. White, M. Coffey et al., “Evidence of genetic resistance of cattle to infection with Mycobacterium bovis,” Journal of Dairy Science, vol. 93, no. 3, pp. 1234–1242, 2010. View at Publisher · View at Google Scholar